Documentation Verification Report

NonDegenerateSimplicesSubcomplex

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/NonDegenerateSimplicesSubcomplex.lean

Statistics

MetricCount
DefinitionsN, cast, instPartialOrder, mk, toN
5
Theoremscast_eq_self, ext_iff, le_iff, mk'_surjective, mk_dim, mk_simplex, mk_surjective, notMem
8
Total13

SSet.Subcomplex

Definitions

NameCategoryTheorems
N 📖CompData
21 mathmath: Pairing.instFiniteSubtypeElemNIIAncestralRel, Pairing.IsProper.isUniquelyCodimOneFace, PairingCore.injective_type₂, Pairing.dim_p, Pairing.isUniquelyCodimOneFace, Pairing.WeakRankFunction.wf_ancestralRel, Pairing.RankFunction.wf_ancestralRel, Pairing.IsRegular.wf, PairingCore.pairing_p_equivII, PairingCore.equivI_apply_coe, Pairing.AncestralRel.dim_le, N.le_iff, PairingCore.injective_type₁, Pairing.union, PairingCore.ancestralRel_iff, PairingCore.equivII_apply_coe, Pairing.instIsWellFoundedElemNIIAncestralRel, Pairing.wf, Pairing.exists_or, Pairing.inter, PairingCore.pairing_p_symm_equivI

SSet.Subcomplex.N

Definitions

NameCategoryTheorems
cast 📖CompOp
1 mathmath: cast_eq_self
instPartialOrder 📖CompOp
1 mathmath: le_iff
mk 📖CompOp
toN 📖CompOp
18 mathmath: SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace, SSet.Subcomplex.Pairing.IsProper.isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index, SSet.Subcomplex.Pairing.dim_p, SSet.Subcomplex.Pairing.isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.surjective', SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index_coe, ext_iff, SSet.Subcomplex.PairingCore.type₂_dim, SSet.Subcomplex.PairingCore.type₂_simplex, SSet.Subcomplex.PairingCore.IsProper.isUniquelyCodimOneFace, SSet.Subcomplex.Pairing.AncestralRel.dim_le, le_iff, SSet.Subcomplex.PairingCore.type₁_dim, SSet.Subcomplex.PairingCore.type₁_simplex, mk_simplex, mk_dim, notMem

Theorems

NameKindAssumesProvesValidatesDepends On
cast_eq_self 📖mathematicalSSet.S.dim
SSet.N.toS
toN
cast
ext_iff 📖mathematicaltoN
le_iff 📖mathematicalSSet.Subcomplex.N
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SSet.N
SSet.N.instPreorder
toN
mk'_surjective 📖mathematicalmk'notMem
mk_dim 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
CategoryTheory.Subfunctor.obj
SSet.S.dim
SSet.N.toS
toN
mk_simplex 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
CategoryTheory.Subfunctor.obj
SSet.S.simplex
SSet.N.toS
toN
mk_surjective 📖SSet.N.nonDegenerate
notMem
notMem 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.S.dim
SSet.N.toS
toN
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.S.simplex

---

← Back to Index