Documentation Verification Report

Op

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Op.lean

Statistics

MetricCount
Definitionsop, opEquivalence, opFunctor, opFunctorCompOpFunctorIso, opObjEquiv
5
TheoremsopEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse, opEquivalence_unitIso, opFunctorCompOpFunctorIso_hom_app_app, opFunctorCompOpFunctorIso_inv_app_app, opFunctor_map, op_map, op_δ, op_σ
10
Total15

SSet

Definitions

NameCategoryTheorems
op 📖CompOp
4 mathmath: op_δ, opFunctor_map, op_σ, op_map
opEquivalence 📖CompOp
4 mathmath: opEquivalence_inverse, opEquivalence_unitIso, opEquivalence_counitIso, opEquivalence_functor
opFunctor 📖CompOp
6 mathmath: opFunctorCompOpFunctorIso_inv_app_app, opFunctorCompOpFunctorIso_hom_app_app, opEquivalence_inverse, opFunctor_map, opEquivalence_unitIso, opEquivalence_functor
opFunctorCompOpFunctorIso 📖CompOp
4 mathmath: opFunctorCompOpFunctorIso_inv_app_app, opFunctorCompOpFunctorIso_hom_app_app, opEquivalence_unitIso, opEquivalence_counitIso
opObjEquiv 📖CompOp
6 mathmath: op_δ, opFunctorCompOpFunctorIso_inv_app_app, opFunctorCompOpFunctorIso_hom_app_app, opFunctor_map, op_σ, op_map

Theorems

NameKindAssumesProvesValidatesDepends On
opEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
SSet
largeCategory
opEquivalence
opFunctorCompOpFunctorIso
opEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
SSet
largeCategory
opEquivalence
opFunctor
opEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
SSet
largeCategory
opEquivalence
opFunctor
opEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
SSet
largeCategory
opEquivalence
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Functor.id
opFunctorCompOpFunctorIso
opFunctorCompOpFunctorIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
largeCategory
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opFunctorCompOpFunctorIso
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
opObjEquiv
opFunctorCompOpFunctorIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
largeCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opFunctorCompOpFunctorIso
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opObjEquiv
opFunctor_map 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
largeCategory
opFunctor
CategoryTheory.Functor.map
DFunLike.coe
Equiv
op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opObjEquiv
op_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
op
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite.op
SimplexCategory.rev
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opObjEquiv
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
op_δ 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
op
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opObjEquiv
SimplexCategory.rev_map_δ
op_σ 📖mathematicalCategoryTheory.SimplicialObject.σ
CategoryTheory.types
op
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opObjEquiv
SimplexCategory.rev_map_σ

---

← Back to Index