Documentation Verification Report

Path

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Path.lean

Statistics

MetricCount
Definitionsarrow, interval, map, vertex, liftPath, arrow, interval, map, mk₂, vertex, Path₁, arrow, vertex, spine, spineId, spine, spineId
17
Theoremsarrow_interval, arrow_src, arrow_tgt, congr_arrow, congr_vertex, ext, ext', ext'_iff, ext_iff, ext₀, ext₀_iff, map_arrow, map_interval, map_vertex, liftPath_arrow_coe, liftPath_vertex_coe, map_ι_liftPath, arrow_src, arrow_tgt, ext, ext', ext'_iff, ext_iff, map_arrow, map_interval, map_vertex, mk₂_arrow, mk₂_vertex, arrow_src, arrow_tgt, ext, ext_iff, spine_arrow, spine_map_subinterval, spine_map_vertex, spine_vertex, trunc_spine, spineId_arrow_coe, spineId_map_hornInclusion, spineId_vertex_coe, spine_arrow, spine_map_subinterval, spine_map_vertex, spine_vertex, spine_δ₀, spineId_arrow_apply_one, spineId_arrow_apply_zero, spineId_vertex, truncation_spine
49
Total66

SSet

Definitions

NameCategoryTheorems
spine 📖CompOp
18 mathmath: StrictSegal.spine_δ_arrow_eq, spine_map_subinterval, spine_vertex, StrictSegal.spine_δ_arrow_lt, spine_δ₀, spine_arrow, StrictSegal.spineToSimplex_spine, IsStrictSegal.segal, spine_map_vertex, StrictSegal.spine_δ_arrow_gt, StrictSegal.spine_spineToSimplex_apply, StrictSegal.spineToSimplex_spine_apply, StrictSegal.spine_spineToSimplex, truncation_spine, StrictSegal.spine_δ_vertex_lt, StrictSegalCore.spine_spineToSimplex, StrictSegal.spine_δ_vertex_ge, StrictSegalCore.spineToSimplex_spine

Theorems

NameKindAssumesProvesValidatesDepends On
spine_arrow 📖mathematicalPath.arrow
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfSucc
spine_map_subinterval 📖mathematicalspine
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.subinterval
Path.interval
Truncated.spine_map_subinterval
spine_map_vertex 📖mathematicalPath.vertex
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
OrderHom
SimplexCategory.len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Truncated.spine_map_vertex
spine_vertex 📖mathematicalPath.vertex
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.const
spine_δ₀ 📖mathematicalspine
CategoryTheory.SimplicialObject.δ
CategoryTheory.types
Path.interval
Path.ext₀
SimplexCategory.const_eq_id
CategoryTheory.FunctorToTypes.map_id_apply
add_zero
Path.ext'
CategoryTheory.SimplicialObject.δ_def
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.mkOfSucc_δ_gt
Path.arrow_interval
add_comm
truncation_spine 📖mathematicalTruncated.spine
CategoryTheory.Functor.obj
SSet
largeCategory
Truncated
Truncated.largeCategory
truncation
spine

SSet.Path

Definitions

NameCategoryTheorems
arrow 📖CompOp
17 mathmath: SSet.StrictSegal.spine_δ_arrow_eq, SSet.StrictSegal.spine_δ_arrow_lt, SSet.stdSimplex.spineId_arrow_apply_zero, SSet.spine_arrow, ext_iff, arrow_tgt, map_arrow, congr_arrow, arrow_src, SSet.horn.spineId_arrow_coe, SSet.StrictSegal.spine_δ_arrow_gt, arrow_interval, SSet.stdSimplex.spineId_arrow_apply_one, SSet.StrictSegalCore.map_mkOfSucc_zero_spineToSimplex, SSet.StrictSegalCore.spineToSimplex_succ, SSet.StrictSegal.spineToSimplex_arrow, ext'_iff
interval 📖CompOp
9 mathmath: SSet.StrictSegal.spine_δ_arrow_eq, SSet.spine_map_subinterval, map_interval, SSet.spine_δ₀, SSet.StrictSegal.spineToSimplex_interval, SSet.StrictSegal.spineToSimplex_edge, arrow_interval, SSet.StrictSegalCore.spineToSimplex_succ, SSet.StrictSegalCore.δ₀_spineToSimplex
map 📖CompOp
6 mathmath: map_interval, SSet.horn.spineId_map_hornInclusion, SSet.StrictSegal.spineToSimplex_map, map_arrow, map_vertex, SSet.Subcomplex.map_ι_liftPath
vertex 📖CompOp
13 mathmath: SSet.StrictSegalCore.spineToSimplex_zero, SSet.spine_vertex, ext_iff, arrow_tgt, congr_vertex, SSet.spine_map_vertex, arrow_src, ext₀_iff, SSet.stdSimplex.spineId_vertex, map_vertex, SSet.StrictSegal.spine_δ_vertex_lt, SSet.StrictSegal.spine_δ_vertex_ge, SSet.StrictSegal.spineToSimplex_vertex

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_interval 📖mathematicalarrow
interval
arrow_src 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
arrow
vertex
SSet.Truncated.Path.arrow_src
arrow_tgt 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
arrow
vertex
SSet.Truncated.Path.arrow_tgt
congr_arrow 📖mathematicalarrow
congr_vertex 📖mathematicalvertex
ext 📖vertex
arrow
SSet.Truncated.Path.ext
ext' 📖arrowSSet.Truncated.Path.ext'
ext'_iff 📖mathematicalarrowext'
ext_iff 📖mathematicalvertex
arrow
ext
ext₀ 📖vertexext
Fintype.complete
ext₀_iff 📖mathematicalvertexext₀
map_arrow 📖mathematicalarrow
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
map_interval 📖mathematicalinterval
map
map_vertex 📖mathematicalvertex
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op

SSet.Subcomplex

Definitions

NameCategoryTheorems
liftPath 📖CompOp
3 mathmath: liftPath_arrow_coe, liftPath_vertex_coe, map_ι_liftPath

Theorems

NameKindAssumesProvesValidatesDepends On
liftPath_arrow_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.Path.vertex
SSet.Path.arrow
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
SimplexCategory.Truncated.incl
SSet.Truncated.Path₁.arrow
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
SSet
SSet.largeCategory
SSet.truncation
toSSet
liftPath
liftPath_vertex_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.Path.vertex
SSet.Path.arrow
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
SimplexCategory.Truncated.incl
SSet.Truncated.Path₁.vertex
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
SSet
SSet.largeCategory
SSet.truncation
toSSet
liftPath
map_ι_liftPath 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.Path.vertex
SSet.Path.arrow
SSet.Path.map
toSSet
liftPath
ι

SSet.Truncated

Definitions

NameCategoryTheorems
Path₁ 📖CompData
spine 📖CompOp
19 mathmath: StrictSegal.spine_spineToSimplex, StrictSegal.spineToSimplex_spine, spine_map_subinterval, StrictSegal.spineToSimplex_spine_apply, StrictSegal.spine_δ_arrow_lt, spine_map_vertex, StrictSegal.spine_δ_arrow_gt, StrictSegal.spine_δ_vertex_ge, spine_arrow, spine_vertex, StrictSegal.spine_δ_arrow_eq, spine_surjective, trunc_spine, IsStrictSegal.spine_bijective, StrictSegal.spine_spineToSimplex_apply, SSet.truncation_spine, StrictSegal.spine_δ_vertex_lt, IsStrictSegal.segal, spine_injective

Theorems

NameKindAssumesProvesValidatesDepends On
spine_arrow 📖mathematicalPath.arrow
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.mkOfSucc
spine_map_subinterval 📖mathematicalspine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.subinterval
Path.interval
Path.ext
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
lt_add_of_lt_add_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
SimplexCategory.const_subinterval_eq
SimplexCategory.mkOfSucc_subinterval_eq
spine_map_vertex 📖mathematicalPath.vertex
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
OrderHom
CategoryTheory.ObjectProperty.FullSubcategory.obj
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp'
SimplexCategory.const_comp
spine_vertex 📖mathematicalPath.vertex
spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.const
trunc_spine 📖mathematicalspine
CategoryTheory.Functor.obj
SSet.Truncated
largeCategory
trunc

SSet.Truncated.Path

Definitions

NameCategoryTheorems
arrow 📖CompOp
13 mathmath: mk₂_arrow, map_arrow, ext_iff, SSet.Truncated.StrictSegal.spine_δ_arrow_lt, SSet.Truncated.StrictSegal.spine_δ_arrow_gt, SSet.Truncated.spine_arrow, SSet.Truncated.StrictSegal.spineToSimplex_arrow, arrow_src, SSet.Truncated.StrictSegal.spine_δ_arrow_eq, ext'_iff, arrow_tgt, SSet.Truncated.liftOfStrictSegal.spineEquiv_f₂_arrow_one, SSet.Truncated.liftOfStrictSegal.spineEquiv_f₂_arrow_zero
interval 📖CompOp
5 mathmath: SSet.Truncated.spine_map_subinterval, SSet.Truncated.StrictSegal.spineToSimplex_edge, map_interval, SSet.Truncated.StrictSegal.spine_δ_arrow_eq, SSet.Truncated.StrictSegal.spineToSimplex_interval
map 📖CompOp
4 mathmath: map_arrow, map_interval, map_vertex, SSet.Truncated.StrictSegal.spineToSimplex_map
mk₂ 📖CompOp
2 mathmath: mk₂_arrow, mk₂_vertex
vertex 📖CompOp
9 mathmath: ext_iff, SSet.Truncated.spine_map_vertex, SSet.Truncated.StrictSegal.spineToSimplex_vertex, SSet.Truncated.StrictSegal.spine_δ_vertex_ge, SSet.Truncated.spine_vertex, arrow_src, map_vertex, arrow_tgt, SSet.Truncated.StrictSegal.spine_δ_vertex_lt

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_src 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.δ
arrow
vertex
SSet.Truncated.Path₁.arrow_src
arrow_tgt 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.δ
arrow
vertex
SSet.Truncated.Path₁.arrow_tgt
ext 📖vertex
arrow
SSet.Truncated.Path₁.ext
ext' 📖arrowext
Fin.eq_castSucc_or_eq_last
arrow_src
arrow_tgt
ext'_iff 📖mathematicalarrowext'
ext_iff 📖mathematicalvertex
arrow
ext
map_arrow 📖mathematicalarrow
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
map_interval 📖mathematicalinterval
map
map_vertex 📖mathematicalvertex
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
mk₂_arrow 📖mathematicalvertexSSet.Truncated.Path₁.arrow
CategoryTheory.Functor.obj
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
mk₂
Matrix.vecCons
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SimplexCategory.Truncated.incl
arrow
Matrix.vecEmpty
mk₂_vertex 📖mathematicalvertexSSet.Truncated.Path₁.vertex
CategoryTheory.Functor.obj
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
mk₂
Matrix.vecCons
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SimplexCategory.Truncated.incl
Matrix.vecEmpty

SSet.Truncated.Path₁

Definitions

NameCategoryTheorems
arrow 📖CompOp
6 mathmath: SSet.Truncated.Path.mk₂_arrow, ext_iff, SSet.horn.spineId_arrow_coe, SSet.Subcomplex.liftPath_arrow_coe, arrow_tgt, arrow_src
vertex 📖CompOp
6 mathmath: ext_iff, SSet.horn.spineId_vertex_coe, arrow_tgt, SSet.Subcomplex.liftPath_vertex_coe, SSet.Truncated.Path.mk₂_vertex, arrow_src

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_src 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.δ
arrow
vertex
arrow_tgt 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.δ
arrow
vertex
ext 📖vertex
arrow
ext_iff 📖mathematicalvertex
arrow
ext

SSet.horn

Definitions

NameCategoryTheorems
spineId 📖CompOp
3 mathmath: spineId_map_hornInclusion, spineId_vertex_coe, spineId_arrow_coe

Theorems

NameKindAssumesProvesValidatesDepends On
spineId_arrow_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
SimplexCategory.Truncated.incl
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
SSet.Truncated.Path₁.arrow
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
SSet.truncation
SSet.Subcomplex.toSSet
spineId
SSet.Path.arrow
SSet.stdSimplex.spineId
spineId_map_hornInclusion 📖mathematicalSSet.Path.map
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.horn
spineId
SSet.Subcomplex.ι
SSet.stdSimplex.spineId
spineId_vertex_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
SimplexCategory.Truncated.incl
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
SSet.Truncated.Path₁.vertex
SSet.Truncated
SSet.Truncated.largeCategory
SSet.Truncated.trunc
SSet.truncation
SSet.Subcomplex.toSSet
spineId
SSet.stdSimplex.const

SSet.stdSimplex

Definitions

NameCategoryTheorems
spineId 📖CompOp
5 mathmath: spineId_arrow_apply_zero, SSet.horn.spineId_map_hornInclusion, SSet.horn.spineId_arrow_coe, spineId_vertex, spineId_arrow_apply_one

Theorems

NameKindAssumesProvesValidatesDepends On
spineId_arrow_apply_one 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
SSet.Path.arrow
spineId
spineId_arrow_apply_zero 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
SSet.Path.arrow
spineId
spineId_vertex 📖mathematicalSSet.Path.vertex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
spineId
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
obj₀Equiv

---

← Back to Index