Documentation Verification Report

Presentable

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Presentable.lean

Statistics

MetricCount
Definitions0
Theoremsexists_epi_from_isCardinalPresentable, instIsFinitelyPresentable, instIsFinitelyPresentableObjSimplexCategoryStdSimplex
3
Total3

SSet.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_epi_from_isCardinalPresentable 📖mathematicalCategoryTheory.Epi
SSet
SSet.largeCategory
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
SSet.hasColimits
finite
SSet.instFiniteSigmaObjOfFinite
SSet.stdSimplex.instFiniteObjSimplexCategory
CategoryTheory.isCardinalPresentable_of_isColimit'
Cardinal.fact_isRegular_aleph0
CategoryTheory.Limits.Types.hasLimitsOfShape
Opposite.small
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
hasCardinalLT_of_finite
CategoryTheory.instFiniteArrowDiscrete
le_refl
instIsFinitelyPresentableObjSimplexCategoryStdSimplex
SSet.range_eq_iSup_sigma_ι
CategoryTheory.Limits.Types.hasColimitsOfSize
CategoryTheory.Limits.colimit.ι_desc
SSet.Subcomplex.range_eq_ofSimplex
Equiv.apply_symm_apply
instIsFinitelyPresentable 📖mathematicalCategoryTheory.IsFinitelyPresentable
SSet
SSet.largeCategory
exists_epi_from_isCardinalPresentable
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
SSet.hasLimits
SSet.instFinitePullback
Cardinal.fact_isRegular_aleph0
CategoryTheory.IsRegularEpiCategory.regularEpiOfEpi
SSet.instIsRegularEpiCategory
CategoryTheory.isCardinalPresentable_of_isColimit'
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.Limits.Types.hasLimitsOfShape
Opposite.small
UnivLE.small
univLE_of_max
UnivLE.self
hasCardinalLT_of_finite
CategoryTheory.Arrow.finite
le_refl
instIsFinitelyPresentableObjSimplexCategoryStdSimplex 📖mathematicalCategoryTheory.IsFinitelyPresentable
SSet
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.Presheaf.instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize
CategoryTheory.Limits.Types.hasColimitsOfSize
univLE_of_max
UnivLE.self
Cardinal.fact_isRegular_aleph0

---

← Back to Index