Documentation Verification Report

ProdStdSimplex

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/ProdStdSimplex.lean

Statistics

MetricCount
DefinitionsisoNerve, objEquiv, orderHomOfSimplex
3
TheoremsinstFiniteTensorObjObjSimplexCategoryStdSimplexMk, instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, nonDegenerate_iff_injective_objEquiv, nonDegenerate_iff_strictMono_objEquiv, objEquiv_apply_fst, objEquiv_apply_snd, objEquiv_map_apply, objEquiv_naturality, objEquiv_δ_apply, orderHomOfSimplex_coe, strictMono_orderHomOfSimplex_iff
11
Total14

SSet.prodStdSimplex

Definitions

NameCategoryTheorems
isoNerve 📖CompOp
objEquiv 📖CompOp
8 mathmath: objEquiv_apply_fst, strictMono_orderHomOfSimplex_iff, objEquiv_δ_apply, objEquiv_naturality, objEquiv_apply_snd, objEquiv_map_apply, nonDegenerate_iff_injective_objEquiv, nonDegenerate_iff_strictMono_objEquiv
orderHomOfSimplex 📖CompOp
2 mathmath: orderHomOfSimplex_coe, strictMono_orderHomOfSimplex_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteTensorObjObjSimplexCategoryStdSimplexMk 📖mathematicalSSet.Finite
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.finite_of_hasDimensionLT
instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat
Subtype.finite
SSet.instFiniteObjOppositeSimplexCategoryTensorObj
SSet.stdSimplex.instFiniteObjOppositeSimplexCategory
instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat 📖mathematicalSSet.HasDimensionLE
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
Set.ext
Fintype.card_le_of_injective
StrictMono.injective
strictMono_orderHomOfSimplex_iff
nonDegenerate_iff_strictMono_objEquiv
SSet.mem_nonDegenerate_iff_notMem_degenerate
Fintype.card_fin
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
nonDegenerate_iff_injective_objEquiv 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
OrderHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
SSet.nonDegenerate_iff_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
PartialOrder.mem_nerve_nonDegenerate_iff_injective
Function.Injective.of_comp_iff
ULift.down_injective
nonDegenerate_iff_strictMono_objEquiv 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
StrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
DFunLike.coe
OrderHom
OrderHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
SSet.nonDegenerate_iff_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
PartialOrder.mem_nerve_nonDegenerate_iff_strictMono
objEquiv_apply_fst 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
OrderHom.instFunLike
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
SSet.stdSimplex.instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
objEquiv_apply_snd 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
OrderHom.instFunLike
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
SSet.stdSimplex.instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
objEquiv_map_apply 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
OrderHom.instFunLike
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.len
SimplexCategory.Hom.toOrderHom
objEquiv_naturality 📖mathematicalOrderHom.comp
SimplexCategory.len
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
OrderHom
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
SimplexCategory.Hom.toOrderHom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
objEquiv_δ_apply 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
Prod.instPreorder
OrderHom.instFunLike
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
CategoryTheory.SimplicialObject.δ
Fin.succAbove
orderHomOfSimplex_coe 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
orderHomOfSimplex
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
SSet.stdSimplex.instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
strictMono_orderHomOfSimplex_iff 📖mathematicalStrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
DFunLike.coe
OrderHom
OrderHom.instFunLike
orderHomOfSimplex
Prod.instPreorder
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
Prod.lt_iff
OrderHom.monotone
Fin.castSucc_le_succ

---

← Back to Index