Documentation Verification Report

Simplices

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Simplices.lean

Statistics

MetricCount
DefinitionsS, cast, dim, equivElements, instPreorder, map, simplex, subcomplex
8
Theoremscast_dim, cast_eq_self, cast_simplex_rfl, dim_eq_of_eq, dim_eq_of_mk_eq, equivElements_apply_fst, equivElements_apply_snd, equivElements_symm_apply_dim, equivElements_symm_apply_simplex, ext_iff, ext_iff', le_def, le_iff, le_iff_nonempty_hom, mk_map_eq_iff_of_mono, mk_map_le, mk_surjective
17
Total25

SSet

Definitions

NameCategoryTheorems
S 📖CompData
8 mathmath: S.equivElements_symm_apply_dim, S.le_iff, S.equivElements_apply_fst, S.equivElements_apply_snd, S.le_iff_nonempty_hom, S.equivElements_symm_apply_simplex, S.mk_map_le, S.le_def

SSet.S

Definitions

NameCategoryTheorems
cast 📖CompOp
8 mathmath: cast_dim, cast_simplex_rfl, ext_iff', IsUniquelyCodimOneFace.cast, IsUniquelyCodimOneFace.δ_eq_iff, IsUniquelyCodimOneFace.existsUnique_δ_cast_simplex, IsUniquelyCodimOneFace.δ_index, cast_eq_self
dim 📖CompOp
20 mathmath: SSet.iSup_subcomplexOfSimplex_prod_eq_top, SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index, equivElements_symm_apply_dim, SSet.Subcomplex.Pairing.dim_p, cast_simplex_rfl, SSet.N.dim_le_of_le, le_iff, SSet.N.mk_dim, IsUniquelyCodimOneFace.dim_eq, SSet.N.dim_lt_of_lt, SSet.Subcomplex.PairingCore.type₂_dim, ext_iff', equivElements_apply_fst, SSet.N.le_iff_exists_mono, SSet.Subcomplex.Pairing.AncestralRel.dim_le, SSet.Subcomplex.PairingCore.type₁_dim, SSet.N.nonDegenerate, dim_eq_of_eq, SSet.Subcomplex.N.mk_dim, SSet.Subcomplex.N.notMem
equivElements 📖CompOp
5 mathmath: equivElements_symm_apply_dim, equivElements_apply_fst, equivElements_apply_snd, le_iff_nonempty_hom, equivElements_symm_apply_simplex
instPreorder 📖CompOp
4 mathmath: le_iff, le_iff_nonempty_hom, mk_map_le, le_def
map 📖CompOp
simplex 📖CompOp
16 mathmath: SSet.iSup_subcomplexOfSimplex_prod_eq_top, cast_simplex_rfl, le_iff, ext_iff', SSet.Subcomplex.PairingCore.type₂_simplex, SSet.N.le_iff_exists_mono, SSet.N.mk_simplex, equivElements_apply_snd, equivElements_symm_apply_simplex, SSet.N.nonDegenerate, IsUniquelyCodimOneFace.δ_eq_iff, SSet.Subcomplex.PairingCore.type₁_simplex, IsUniquelyCodimOneFace.existsUnique_δ_cast_simplex, SSet.Subcomplex.N.mk_simplex, SSet.Subcomplex.N.notMem, IsUniquelyCodimOneFace.δ_index
subcomplex 📖CompOp
9 mathmath: SSet.orderEmbeddingN_apply, SSet.N.subcomplex_injective_iff, SSet.N.le_iff, toN_eq_iff, SSet.N.eq_iff, SSet.N.iSup_subcomplex_eq_top, subcomplex_toN, le_def, existsUnique_n

Theorems

NameKindAssumesProvesValidatesDepends On
cast_dim 📖mathematicaldimcast
cast_eq_self 📖mathematicaldimcastmk_surjective
cast_simplex_rfl 📖mathematicalsimplex
cast
dim
dim_eq_of_eq 📖mathematicaldim
dim_eq_of_mk_eq 📖dim_eq_of_eq
equivElements_apply_fst 📖mathematicalOpposite
SimplexCategory
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
DFunLike.coe
Equiv
SSet.S
CategoryTheory.Functor.Elements
EquivLike.toFunLike
Equiv.instEquivLike
equivElements
Opposite.op
dim
equivElements_apply_snd 📖mathematicalOpposite
SimplexCategory
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
DFunLike.coe
Equiv
SSet.S
CategoryTheory.Functor.Elements
EquivLike.toFunLike
Equiv.instEquivLike
equivElements
simplex
equivElements_symm_apply_dim 📖mathematicaldim
DFunLike.coe
Equiv
CategoryTheory.Functor.Elements
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.S
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivElements
SimplexCategory.len
Opposite.unop
equivElements_symm_apply_simplex 📖mathematicalsimplex
DFunLike.coe
Equiv
CategoryTheory.Functor.Elements
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.S
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivElements
CategoryTheory.Functor.obj
CategoryTheory.types
ext_iff 📖
ext_iff' 📖mathematicalsimplex
cast
dim
mk_surjective
le_def 📖mathematicalSSet.S
Preorder.toLE
instPreorder
SSet.Subcomplex
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
subcomplex
le_iff 📖mathematicalSSet.S
Preorder.toLE
instPreorder
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
dim
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
simplex
le_def
SSet.Subcomplex.ofSimplex_le_iff
CategoryTheory.Subfunctor.ofSection_obj
Set.mem_setOf_eq
le_iff_nonempty_hom 📖mathematicalSSet.S
Preorder.toLE
instPreorder
Quiver.Hom
CategoryTheory.Functor.Elements
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.categoryOfElements
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivElements
le_iff
mk_map_eq_iff_of_mono 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.IsIso.id
SimplexCategory.eq_id_of_mono
dim_eq_of_mk_eq
CategoryTheory.FunctorToTypes.map_id_apply
SimplexCategory.eq_id_of_isIso
SimplexCategory.eq_of_isIso
mk_map_le 📖mathematicalSSet.S
Preorder.toLE
instPreorder
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
le_iff
mk_surjective 📖

---

← Back to Index