Documentation Verification Report

Skeleton

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Skeleton.lean

Statistics

MetricCount
Definitionsskeleton, skeletonOfMono
2
TheoremsiSup_skeleton, iSup_skeletonOfMono, mem_skeleton, mem_skeletonOfMono_obj_iff_of_nonDegenerate, mem_skeleton_obj_iff_of_nonDegenerate, ofSimplex_le_skeleton, skeletonOfMono_obj_eq_top, skeletonOfMono_succ, skeletonOfMono_zero, skeleton_le_skeletonOfMono, skeleton_obj_eq_top, skeleton_succ, skeleton_zero
13
Total15

SSet

Definitions

NameCategoryTheorems
skeleton 📖CompOp
8 mathmath: ofSimplex_le_skeleton, iSup_skeleton, skeleton_le_skeletonOfMono, skeleton_obj_eq_top, mem_skeleton_obj_iff_of_nonDegenerate, skeleton_succ, mem_skeleton, skeleton_zero
skeletonOfMono 📖CompOp
6 mathmath: skeleton_le_skeletonOfMono, skeletonOfMono_zero, iSup_skeletonOfMono, skeletonOfMono_obj_eq_top, mem_skeletonOfMono_obj_iff_of_nonDegenerate, skeletonOfMono_succ

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_skeleton 📖mathematicaliSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
DFunLike.coe
OrderHom
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeleton
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
le_antisymm
Subcomplex.le_iff_contains_nonDegenerate
CategoryTheory.Subfunctor.iSup_obj
mem_skeleton
iSup_skeletonOfMono 📖mathematicaliSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
DFunLike.coe
OrderHom
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeletonOfMono
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
le_antisymm
iSup_skeleton
iSup_le_iff
le_trans
skeleton_le_skeletonOfMono
le_iSup
mem_skeleton 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
DFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeleton
exists_nonDegenerate
le_trans
lt_of_le_of_lt
SimplexCategory.len_le_of_epi
le_refl
le_iSup
CategoryTheory.Subfunctor.map
Subcomplex.mem_ofSimplex_obj
mem_skeletonOfMono_obj_iff_of_nonDegenerate 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
DFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeletonOfMono
nonDegenerate
Set.range
CategoryTheory.NatTrans.app
mem_skeleton_obj_iff_of_nonDegenerate 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
DFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeleton
nonDegenerate
CategoryTheory.Subfunctor.iSup_obj
Set.iUnion_coe_set
Set.iUnion_congr_Prop
mono_of_nonDegenerate
SimplexCategory.len_le_of_mono
mem_skeleton
ofSimplex_le_skeleton 📖mathematicalSubcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Subcomplex.ofSimplex
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
skeleton
mem_skeleton
skeletonOfMono_obj_eq_top 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
DFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeletonOfMono
Opposite.op
Top.top
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toTop
Set.instBooleanAlgebra
top_le_iff
skeleton_obj_eq_top
le_sup_right
skeletonOfMono_succ 📖mathematicalDFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
OrderHom.instFunLike
skeletonOfMono
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
iSup
Set.Elem
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
nonDegenerate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
Subcomplex.range
Subcomplex.ofSimplex
le_antisymm
skeleton_succ
LE.le.trans
le_sup_left
le_sup_right
le_trans
le_refl
le_iSup
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
ofSimplex_le_skeleton
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instZeroLEOneClass
skeletonOfMono_zero 📖mathematicalDFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
OrderHom.instFunLike
skeletonOfMono
Subcomplex.range
skeleton_zero
sup_of_le_left
skeleton_le_skeletonOfMono 📖mathematicalSubcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
skeleton
skeletonOfMono
le_sup_right
skeleton_obj_eq_top 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
DFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
OrderHom.instFunLike
skeleton
Opposite.op
Top.top
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toTop
Set.instBooleanAlgebra
top_le_iff
mem_skeleton
skeleton_succ 📖mathematicalDFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
OrderHom.instFunLike
skeleton
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
iSup
Set.Elem
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
nonDegenerate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Subcomplex.ofSimplex
Set
Set.instMembership
le_antisymm
LE.le.lt_or_eq
LE.le.trans
ofSimplex_le_skeleton
le_sup_left
le_trans
le_refl
le_iSup
le_sup_right
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instZeroLEOneClass
skeleton_zero 📖mathematicalDFunLike.coe
OrderHom
Subcomplex
Nat.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
OrderHom.instFunLike
skeleton
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Fin.isEmpty'

---

← Back to Index