Documentation Verification Report

StrictSegal

πŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/StrictSegal.lean

Statistics

MetricCount
DefinitionsstrictSegal, IsStrictSegal, StrictSegal, ofCore, ofIsStrictSegal, spineEquiv, spineToDiagonal, spineToSimplex, truncation, StrictSegalCore, concat, spineToSimplex, spineToSimplexAux, IsStrictSegal, StrictSegal, ofIsStrictSegal, spineEquiv, spineToDiagonal, spineToSimplex
19
TheoremsisStrictSegal, segal, instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal, isStrictSegal, spineInjective, spineToSimplex_arrow, spineToSimplex_edge, spineToSimplex_interval, spineToSimplex_map, spineToSimplex_spine, spineToSimplex_spine_apply, spineToSimplex_vertex, spine_spineToSimplex, spine_spineToSimplex_apply, spine_Ξ΄_arrow_eq, spine_Ξ΄_arrow_gt, spine_Ξ΄_arrow_lt, spine_Ξ΄_vertex_ge, spine_Ξ΄_vertex_lt, injective, map_mkOfSucc_zero_concat, map_mkOfSucc_zero_spineToSimplex, spineToSimplex_spine, spineToSimplex_succ, spineToSimplex_zero, spine_spineToSimplex, Ξ΄β‚€_concat, Ξ΄β‚€_spineToSimplex, ext, hom_ext, segal, spine_bijective, isStrictSegal, spineInjective, spineToSimplex_arrow, spineToSimplex_edge, spineToSimplex_interval, spineToSimplex_map, spineToSimplex_spine, spineToSimplex_spine_apply, spineToSimplex_vertex, spine_spineToSimplex, spine_spineToSimplex_apply, spine_Ξ΄_arrow_eq, spine_Ξ΄_arrow_gt, spine_Ξ΄_arrow_lt, spine_Ξ΄_vertex_ge, spine_Ξ΄_vertex_lt, spine_injective, spine_surjective
50
Total69

CategoryTheory.Nerve

Definitions

NameCategoryTheorems
strictSegal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isStrictSegal πŸ“–mathematicalβ€”SSet.IsStrictSegal
CategoryTheory.nerve
β€”SSet.StrictSegal.isStrictSegal

SSet

Definitions

NameCategoryTheorems
IsStrictSegal πŸ“–CompData
2 mathmath: CategoryTheory.Nerve.isStrictSegal, StrictSegal.isStrictSegal
StrictSegal πŸ“–CompDataβ€”
StrictSegalCore πŸ“–CompDataβ€”

SSet.IsStrictSegal

Theorems

NameKindAssumesProvesValidatesDepends On
segal πŸ“–mathematicalβ€”Function.Bijective
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.Path
SSet.spine
β€”β€”

SSet.StrictSegal

Definitions

NameCategoryTheorems
ofCore πŸ“–CompOpβ€”
ofIsStrictSegal πŸ“–CompOpβ€”
spineEquiv πŸ“–CompOp
1 mathmath: spineInjective
spineToDiagonal πŸ“–CompOp
2 mathmath: spine_Ξ΄_arrow_eq, spineToSimplex_edge
spineToSimplex πŸ“–CompOp
14 mathmath: spine_Ξ΄_arrow_eq, spine_Ξ΄_arrow_lt, spineToSimplex_map, spineToSimplex_interval, spineToSimplex_spine, spineToSimplex_edge, spine_Ξ΄_arrow_gt, spine_spineToSimplex_apply, spineToSimplex_spine_apply, spineToSimplex_arrow, spine_spineToSimplex, spine_Ξ΄_vertex_lt, spine_Ξ΄_vertex_ge, spineToSimplex_vertex
truncation πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal πŸ“–mathematicalβ€”SSet.Truncated.IsStrictSegal
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
β€”SSet.Truncated.StrictSegal.isStrictSegal
isStrictSegal πŸ“–mathematicalβ€”SSet.IsStrictSegalβ€”Equiv.bijective
spineInjective πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.Path
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
spineEquiv
β€”Equiv.injective
spineToSimplex_arrow πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfSucc
spineToSimplex
SSet.Path.arrow
β€”SSet.spine_arrow
spine_spineToSimplex_apply
spineToSimplex_edge πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.intervalEdge
spineToSimplex
spineToDiagonal
SSet.Path.interval
β€”spineToSimplex_interval
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.diag_subinterval_eq
spineToSimplex_interval πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.subinterval
spineToSimplex
SSet.Path.interval
β€”spineInjective
spine_spineToSimplex_apply
SSet.spine_map_subinterval
spineToSimplex_map πŸ“–mathematicalβ€”spineToSimplex
SSet.Path.map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
β€”spineInjective
SSet.Path.ext'
CategoryTheory.types_comp_apply
CategoryTheory.NatTrans.naturality
spineToSimplex_arrow
SSet.Path.map_arrow
spineToSimplex_spine πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.Path
spineToSimplex
SSet.spine
β€”β€”
spineToSimplex_spine_apply πŸ“–mathematicalβ€”spineToSimplex
SSet.spine
β€”spineToSimplex_spine
spineToSimplex_vertex πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.const
spineToSimplex
SSet.Path.vertex
β€”SSet.spine_vertex
spine_spineToSimplex_apply
spine_spineToSimplex πŸ“–mathematicalβ€”SSet.Path
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.spine
spineToSimplex
β€”β€”
spine_spineToSimplex_apply πŸ“–mathematicalβ€”SSet.spine
spineToSimplex
β€”spine_spineToSimplex
spine_Ξ΄_arrow_eq πŸ“–mathematicalβ€”SSet.Path.arrow
SSet.spine
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
spineToDiagonal
SSet.Path.interval
β€”CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.mkOfSucc_Ξ΄_eq
spineToSimplex_edge
spine_Ξ΄_arrow_gt πŸ“–mathematicalβ€”SSet.Path.arrow
SSet.spine
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
β€”CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.mkOfSucc_Ξ΄_gt
spineToSimplex_arrow
spine_Ξ΄_arrow_lt πŸ“–mathematicalβ€”SSet.Path.arrow
SSet.spine
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
β€”CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.mkOfSucc_Ξ΄_lt
spineToSimplex_arrow
spine_Ξ΄_vertex_ge πŸ“–mathematicalβ€”SSet.Path.vertex
SSet.spine
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
β€”CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.const_comp
spineToSimplex_vertex
Fin.succAbove_of_le_castSucc
spine_Ξ΄_vertex_lt πŸ“–mathematicalβ€”SSet.Path.vertex
SSet.spine
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
β€”CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.const_comp
spineToSimplex_vertex
Fin.succAbove_of_castSucc_lt

SSet.StrictSegalCore

Definitions

NameCategoryTheorems
concat πŸ“–CompOp
3 mathmath: map_mkOfSucc_zero_concat, Ξ΄β‚€_concat, spineToSimplex_succ
spineToSimplex πŸ“–CompOp
6 mathmath: spineToSimplex_zero, map_mkOfSucc_zero_spineToSimplex, spineToSimplex_succ, Ξ΄β‚€_spineToSimplex, spine_spineToSimplex, spineToSimplex_spine
spineToSimplexAux πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–β€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfSucc
CategoryTheory.SimplicialObject.Ξ΄
β€”β€”β€”
map_mkOfSucc_zero_concat πŸ“–mathematicalCategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
SimplexCategory.mkOfSucc
concat
β€”β€”
map_mkOfSucc_zero_spineToSimplex πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfSucc
spineToSimplex
SSet.Path.arrow
β€”spineToSimplex_succ
map_mkOfSucc_zero_concat
spineToSimplex_spine πŸ“–mathematicalβ€”spineToSimplex
SSet.spine
β€”SimplexCategory.const_eq_id
CategoryTheory.FunctorToTypes.map_id_apply
injective
map_mkOfSucc_zero_spineToSimplex
Ξ΄β‚€_spineToSimplex
SSet.spine_Ξ΄β‚€
spineToSimplex_succ πŸ“–mathematicalβ€”spineToSimplex
concat
SSet.Path.arrow
SSet.Path.interval
β€”β€”
spineToSimplex_zero πŸ“–mathematicalβ€”spineToSimplex
SSet.Path.vertex
β€”β€”
spine_spineToSimplex πŸ“–mathematicalβ€”SSet.spine
spineToSimplex
β€”Subtype.prop
Ξ΄β‚€_concat πŸ“–mathematicalCategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
concatβ€”β€”
Ξ΄β‚€_spineToSimplex πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
spineToSimplex
SSet.Path.interval
β€”spineToSimplex_succ
Ξ΄β‚€_concat

SSet.Truncated

Definitions

NameCategoryTheorems
IsStrictSegal πŸ“–CompData
3 mathmath: CategoryTheory.Nerve.instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctorβ‚‚, StrictSegal.isStrictSegal, SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal
StrictSegal πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
spine_injective πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
Path
spine
β€”Function.Bijective.injective
IsStrictSegal.spine_bijective
spine_surjective πŸ“–mathematicalβ€”spineβ€”Function.Bijective.surjective
IsStrictSegal.spine_bijective

SSet.Truncated.IsStrictSegal

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”SimplexCategory.len
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.mkOfSucc
β€”β€”SSet.Truncated.spine_injective
SSet.Truncated.Path.ext'
hom_ext πŸ“–β€”CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
β€”β€”SSet.Truncated.hom_ext
CategoryTheory.types_ext
SimplexCategory.Ξ΄_comp_Οƒ_self
CategoryTheory.FunctorToTypes.map_id_apply
ext
segal πŸ“–mathematicalβ€”Function.Bijective
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Path
SSet.Truncated.spine
β€”spine_bijective
spine_bijective πŸ“–mathematicalβ€”Function.Bijective
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Path
SSet.Truncated.spine
β€”β€”

SSet.Truncated.StrictSegal

Definitions

NameCategoryTheorems
ofIsStrictSegal πŸ“–CompOpβ€”
spineEquiv πŸ“–CompOp
3 mathmath: spineInjective, SSet.Truncated.liftOfStrictSegal.spineEquiv_fβ‚‚_arrow_one, SSet.Truncated.liftOfStrictSegal.spineEquiv_fβ‚‚_arrow_zero
spineToDiagonal πŸ“–CompOp
2 mathmath: spineToSimplex_edge, spine_Ξ΄_arrow_eq
spineToSimplex πŸ“–CompOp
14 mathmath: spine_spineToSimplex, spineToSimplex_spine, spineToSimplex_spine_apply, spine_Ξ΄_arrow_lt, spine_Ξ΄_arrow_gt, spineToSimplex_vertex, spine_Ξ΄_vertex_ge, spineToSimplex_edge, spineToSimplex_arrow, spine_Ξ΄_arrow_eq, spineToSimplex_interval, spine_spineToSimplex_apply, spine_Ξ΄_vertex_lt, spineToSimplex_map

Theorems

NameKindAssumesProvesValidatesDepends On
isStrictSegal πŸ“–mathematicalβ€”SSet.Truncated.IsStrictSegalβ€”Equiv.bijective
spineInjective πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Path
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
spineEquiv
β€”Equiv.injective
spineToSimplex_arrow πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.mkOfSucc
spineToSimplex
SSet.Truncated.Path.arrow
β€”SSet.Truncated.spine_arrow
spine_spineToSimplex_apply
spineToSimplex_edge πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.intervalEdge
spineToSimplex
spineToDiagonal
SSet.Truncated.Path.interval
β€”spineToSimplex_interval
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.diag_subinterval_eq
spineToSimplex_interval πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.subinterval
spineToSimplex
SSet.Truncated.Path.interval
β€”spineInjective
spine_spineToSimplex_apply
SSet.Truncated.spine_map_subinterval
spineToSimplex_map πŸ“–mathematicalβ€”spineToSimplex
SSet.Truncated.Path.map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
β€”spineInjective
SSet.Truncated.Path.ext'
CategoryTheory.types_comp_apply
CategoryTheory.NatTrans.naturality
spineToSimplex_arrow
spineToSimplex_spine πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Path
spineToSimplex
SSet.Truncated.spine
β€”β€”
spineToSimplex_spine_apply πŸ“–mathematicalβ€”spineToSimplex
SSet.Truncated.spine
β€”spineToSimplex_spine
spineToSimplex_vertex πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.const
spineToSimplex
SSet.Truncated.Path.vertex
β€”SSet.Truncated.spine_vertex
spine_spineToSimplex_apply
spine_spineToSimplex πŸ“–mathematicalβ€”SSet.Truncated.Path
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.spine
spineToSimplex
β€”β€”
spine_spineToSimplex_apply πŸ“–mathematicalβ€”SSet.Truncated.spine
spineToSimplex
β€”spine_spineToSimplex
spine_Ξ΄_arrow_eq πŸ“–mathematicalβ€”SSet.Truncated.Path.arrow
SSet.Truncated.spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.Ξ΄
spineToSimplex
spineToDiagonal
SSet.Truncated.Path.interval
β€”SSet.Truncated.spine_arrow
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.mkOfSucc_Ξ΄_eq
spineToSimplex_edge
spine_Ξ΄_arrow_gt πŸ“–mathematicalβ€”SSet.Truncated.Path.arrow
SSet.Truncated.spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.Ξ΄
spineToSimplex
β€”SSet.Truncated.spine_arrow
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.mkOfSucc_Ξ΄_gt
spineToSimplex_arrow
spine_Ξ΄_arrow_lt πŸ“–mathematicalβ€”SSet.Truncated.Path.arrow
SSet.Truncated.spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.Ξ΄
spineToSimplex
β€”SSet.Truncated.spine_arrow
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.mkOfSucc_Ξ΄_lt
spineToSimplex_arrow
spine_Ξ΄_vertex_ge πŸ“–mathematicalβ€”SSet.Truncated.Path.vertex
SSet.Truncated.spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.Ξ΄
spineToSimplex
β€”SSet.Truncated.spine_vertex
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.const_comp
spineToSimplex_vertex
Fin.succAbove_of_le_castSucc
spine_Ξ΄_vertex_lt πŸ“–mathematicalβ€”SSet.Truncated.Path.vertex
SSet.Truncated.spine
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Hom.tr
SimplexCategory.Ξ΄
spineToSimplex
β€”SSet.Truncated.spine_vertex
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.Hom.tr_comp
SimplexCategory.const_comp
spineToSimplex_vertex
Fin.succAbove_of_castSucc_lt

---

← Back to Index