Documentation Verification Report

SubcomplexColimits

πŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/SubcomplexColimits.lean

Statistics

MetricCount
DefinitionsBicartSq, isColimit, isColimit'
3
TheoremsisPushout
1
Total4

SSet.Subcomplex

Definitions

NameCategoryTheorems
BicartSq πŸ“–MathDef
3 mathmath: SSet.hornβ‚‚β‚‚.sq, SSet.hornβ‚‚β‚€.sq, SSet.horn₂₁.sq

SSet.Subcomplex.BicartSq

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout πŸ“–mathematicalSSet.Subcomplex.BicartSqCategoryTheory.IsPushout
SSet
SSet.largeCategory
SSet.Subcomplex.toSSet
SSet.Subcomplex.homOfLE
Lattice.BicartSq.le₁₂
SSet.Subcomplex
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Lattice.BicartSq.le₁₃
Lattice.BicartSq.leβ‚‚β‚„
Lattice.BicartSq.le₃₄
β€”Lattice.BicartSq.le₁₂
Lattice.BicartSq.le₁₃
Lattice.BicartSq.leβ‚‚β‚„
Lattice.BicartSq.le₃₄
Lattice.BicartSq.sup_eq
Lattice.BicartSq.inf_eq
CategoryTheory.Limits.Types.isPushout_of_bicartSq

SSet.Subcomplex.MulticoequalizerDiagram

Definitions

NameCategoryTheorems
isColimit πŸ“–CompOpβ€”
isColimit' πŸ“–CompOpβ€”

---

← Back to Index