Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/SingularHomology/Basic.lean

Statistics

MetricCount
DefinitionssingularChainComplexFunctor, singularChainComplexFunctor, singularChainComplexFunctorIsoOfTotallyDisconnectedSpace, singularHomologyFunctor, singularHomologyFunctorZeroOfTotallyDisconnectedSpace
5
TheoremsisZero_singularHomologyFunctor_of_totallyDisconnectedSpace, singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace
2
Total7

AlgebraicTopology

Definitions

NameCategoryTheorems
singularChainComplexFunctor 📖CompOp
1 mathmath: singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace
singularChainComplexFunctorIsoOfTotallyDisconnectedSpace 📖CompOp
singularHomologyFunctor 📖CompOp
1 mathmath: isZero_singularHomologyFunctor_of_totallyDisconnectedSpace
singularHomologyFunctorZeroOfTotallyDisconnectedSpace 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_singularHomologyFunctor_of_totallyDisconnectedSpace 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
singularHomologyFunctor
CategoryTheory.Limits.hasCoproducts_shrink
CategoryTheory.Limits.IsInitial.isZero
HomologicalComplex.ExactAt.isZero_homology
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace
singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace 📖mathematicalCategoryTheory.Limits.HasCoproductsHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
singularChainComplexFunctor
CategoryTheory.Limits.hasCoproducts_shrink
CategoryTheory.Limits.IsInitial.isZero
HomologicalComplex.ExactAt.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ChainComplex.alternatingConst_exactAt

AlgebraicTopology.SSet

Definitions

NameCategoryTheorems
singularChainComplexFunctor 📖CompOp

---

← Back to Index