Documentation Verification Report

Equivalence

πŸ“ Source: Mathlib/Analysis/AbsoluteValue/Equivalence.lean

Statistics

MetricCount
DefinitionsIsEquiv, instSetoid
2
Theoremseq_iff_eq, eq_one_iff, equivWithAbs_image_mem_nhds_zero, isEmbedding_equivWithAbs, isNontrivial, isNontrivial_congr, le_iff_le, le_one_iff, log_div_log_eq_log_div_log, log_div_log_pos, lt_iff_lt, lt_one_iff, one_le_iff, one_lt_iff, refl, rfl, trans, eq_trivial_of_isEquiv_trivial, exists_lt_one_one_le_of_not_isEquiv, exists_one_lt_lt_one_of_not_isEquiv, exists_one_lt_lt_one_pi_of_not_isEquiv, isEquiv_iff_exists_rpow_eq, isEquiv_iff_isHomeomorph, isEquiv_iff_lt_one_iff, isEquiv_of_lt_one_imp, isEquiv_refl, isEquiv_symm, isEquiv_trans, isEquiv_trivial_iff_eq_trivial
29
Total31

AbsoluteValue

Definitions

NameCategoryTheorems
IsEquiv πŸ“–MathDef
16 mathmath: NumberField.InfinitePlace.eq_iff_isEquiv, isEquiv_trivial_iff_eq_trivial, IsEquiv.rfl, isEquiv_refl, isEquiv_iff_lt_one_iff, Rat.AbsoluteValue.equiv_real_of_unbounded, Rat.AbsoluteValue.exists_nat_rpow_iff_isEquiv, Rat.AbsoluteValue.equiv_on_nat_iff_equiv, isEquiv_of_lt_one_imp, IsEquiv.refl, Rat.AbsoluteValue.not_real_equiv_padic, Rat.AbsoluteValue.equiv_padic_of_bounded, Rat.AbsoluteValue.not_real_isEquiv_padic, isEquiv_iff_exists_rpow_eq, isEquiv_iff_isHomeomorph, eq_trivial_of_isEquiv_trivial
instSetoid πŸ“–CompOp
1 mathmath: Rat.AbsoluteValue.equiv_real_or_padic

Theorems

NameKindAssumesProvesValidatesDepends On
eq_trivial_of_isEquiv_trivial πŸ“–mathematicalβ€”IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
trivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
IsStrictOrderedRing.toCharZero
β€”isEquiv_trivial_iff_eq_trivial
exists_lt_one_one_le_of_not_isEquiv πŸ“–mathematicalIsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsEquiv
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Preorder.toLE
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
isEquiv_of_lt_one_imp
exists_one_lt_lt_one_of_not_isEquiv πŸ“–mathematicalIsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsEquiv
Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
funLike
β€”exists_lt_one_one_le_of_not_isEquiv
IsEquiv.symm
map_divβ‚€
monoidWithZeroHomClass
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pos_iff
lt_of_lt_of_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_of_le_of_lt'
exists_one_lt_lt_one_pi_of_not_isEquiv πŸ“–mathematicalIsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
IsEquiv
Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AbsoluteValue
funLike
β€”Fintype.induction_subsingleton_or_nontrivial
IsNontrivial.exists_abv_gt_one
AddGroup.existsAddOfLE
eq_or_ne
Nat.card_eq_two_iff'
Fintype.card_eq_nat_card
exists_one_lt_lt_one_of_not_isEquiv
Fintype.one_lt_card_iff_nontrivial
exists_ne
Fintype.card_subtype_lt
Pairwise.comp_of_injective
Subtype.val_injective
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
sub_eq_zero_of_eq
Fintype.card_subtype_eq_or_eq_of_ne
Subtype.finite
Finite.of_fintype
Ne.lt_or_gt
isEquiv_iff_exists_rpow_eq πŸ“–mathematicalβ€”IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
Real.instLT
Real.instZero
Real.instPow
DFunLike.coe
AbsoluteValue
funLike
β€”IsEquiv.log_div_log_pos
eq_or_ne
map_zero
Real.zero_rpow
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
IsEquiv.eq_one_iff
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
Real.one_rpow
IsEquiv.log_div_log_eq_log_div_log
IsEquiv.symm
div_eq_inv_mul
Real.rpow_mul
nonneg
Real.rpow_inv_log
pos
Iff.not
Real.exp_one_rpow
Real.exp_log
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
Real.rpow_one
not_isNontrivial_apply
IsEquiv.isNontrivial_congr
isEquiv_iff_lt_one_iff
Real.instIsStrictOrderedRing
Real.rpow_lt_one_iff'
isEquiv_iff_isHomeomorph πŸ“–mathematicalβ€”IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
IsHomeomorph
WithAbs
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithAbs.instSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
WithAbs.equivWithAbs
β€”isHomeomorph_iff_isEmbedding_surjective
IsEquiv.isEmbedding_equivWithAbs
RingEquiv.surjective
isEquiv_iff_lt_one_iff
Real.instIsStrictOrderedRing
RingEquiv.apply_symm_apply
NormedDivisionRing.toNormMulClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Filter.Tendsto.comp
Continuous.tendsto
Topology.IsEmbedding.continuous
Topology.IsEmbedding.continuous_iff
continuous_id
isEquiv_iff_lt_one_iff πŸ“–mathematicalβ€”IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”IsEquiv.lt_one_iff
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
eq_or_ne
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
monoidWithZeroHomClass
map_zero
nonnegHomClass
le_iff_le_iff_lt_iff_lt
one_mul
mul_inv_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
map_invβ‚€
map_mul
mulHomClass
isEquiv_of_lt_one_imp πŸ“–mathematicalIsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
IsEquivβ€”isEquiv_iff_lt_one_iff
eq_or_ne
map_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsNontrivial.exists_abv_lt_one
one_mul
mul_inv_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
monoidWithZeroHomClass
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_invβ‚€
map_mul
mulHomClass
lt_of_lt_of_le
one_le_powβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
exists_pow_lt_of_lt_one
pos
not_le
not_lt
LT.lt.le
isEquiv_refl πŸ“–mathematicalβ€”IsEquivβ€”IsEquiv.refl
isEquiv_symm πŸ“–β€”IsEquivβ€”β€”IsEquiv.symm
isEquiv_trans πŸ“–β€”IsEquivβ€”β€”IsEquiv.trans
isEquiv_trivial_iff_eq_trivial πŸ“–mathematicalβ€”IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
trivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
IsStrictOrderedRing.toCharZero
β€”IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
ext
IsEquiv.eq_one_iff
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_zero
IsEquiv.rfl

AbsoluteValue.IsEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq πŸ“–mathematicalAbsoluteValue.IsEquivDFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”β€”
eq_one_iff πŸ“–mathematicalAbsoluteValue.IsEquivDFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
eq_iff_eq
equivWithAbs_image_mem_nhds_zero πŸ“–mathematicalAbsoluteValue.IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
Set
WithAbs
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Set.image
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithAbs.instSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
WithAbs.equivWithAbs
β€”Metric.mem_nhds_iff
AbsoluteValue.isEquiv_iff_exists_rpow_eq
Real.rpow_pos_of_pos
RingEquiv.apply_symm_apply
Set.mem_image_of_mem
dist_zero_right
Real.rpow_lt_rpow_iff
AbsoluteValue.nonneg
LT.lt.le
WithAbs.norm_eq_abv
Metric.mem_ball
isEmbedding_equivWithAbs πŸ“–mathematicalAbsoluteValue.IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
Topology.IsEmbedding
WithAbs
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithAbs.instSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
WithAbs.equivWithAbs
β€”Topology.IsInducing.isEmbedding
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
IsTopologicalAddGroup.isInducing_iff_nhds_zero
SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Filter.ext
equivWithAbs_image_mem_nhds_zero
RingEquiv.image_eq_preimage_symm
Set.preimage_preimage
RingEquiv.symm_apply_apply
Set.instReflSubset
Filter.mem_map_iff_exists_image
Filter.map_equiv_symm
RingEquiv.coe_toEquiv
Filter.mem_of_superset
symm
WithAbs.equivWithAbs_symm
RingEquiv.coe_toEquiv_symm
isNontrivial πŸ“–β€”AbsoluteValue.IsEquiv
AbsoluteValue.IsNontrivial
β€”β€”isNontrivial_congr
isNontrivial_congr πŸ“–mathematicalAbsoluteValue.IsEquivAbsoluteValue.IsNontrivialβ€”not_iff_not
eq_one_iff
le_iff_le πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”β€”
le_one_iff πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
log_div_log_eq_log_div_log πŸ“–mathematicalAbsoluteValue.IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.log
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”one_lt_iff
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
div_lt_div_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.log_pos
mul_comm
not_lt_of_gt
lt_one_iff
map_divβ‚€
AbsoluteValue.monoidWithZeroHomClass
map_zpowβ‚€
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
div_lt_one
zpow_pos
Real.instZeroLEOneClass
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.log_lt_log_iff
pow_pos
Real.log_zpow
Real.log_pow
Real.instNontrivial
Rat.cast_natCast
Rat.cast_intCast
Rat.cast_div
RCLike.charZero_rclike
Rat.num_div_den
one_lt_div
lt_of_le_of_ne
inv_ne_zero
map_invβ‚€
Real.log_inv
neg_div_neg_eq
one_lt_inv_iffβ‚€
AbsoluteValue.pos
Ne.lt_of_le
log_div_log_pos πŸ“–mathematicalAbsoluteValue.IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.log
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”Ne.lt_or_gt
neg_div_neg_eq
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
neg_pos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.log_neg
AbsoluteValue.pos
lt_one_iff
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
Real.log_pos
one_lt_iff
lt_iff_lt πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”lt_iff_lt_of_le_iff_le'
lt_one_iff πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLT
PartialOrder.toPreorder
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
lt_iff_lt
one_le_iff πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
one_lt_iff πŸ“–mathematicalAbsoluteValue.IsEquivPreorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
lt_iff_lt
refl πŸ“–mathematicalβ€”AbsoluteValue.IsEquivβ€”β€”
rfl πŸ“–mathematicalβ€”AbsoluteValue.IsEquivβ€”β€”
trans πŸ“–β€”AbsoluteValue.IsEquivβ€”β€”β€”

---

← Back to Index