Documentation Verification Report

Binomial

πŸ“ Source: Mathlib/Analysis/Analytic/Binomial.lean

Statistics

MetricCount
DefinitionsbinomialSeries
1
TheoremshasFPowerSeriesOnBall_ofScalars_mul_add_zero, ofReal_choose, one_add_cpow_hasFPowerSeriesAt_zero, one_add_cpow_hasFPowerSeriesOnBall_zero, one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero, one_div_one_sub_hasFPowerSeriesOnBall_zero, one_div_one_sub_pow_hasFPowerSeriesOnBall_zero, one_div_one_sub_sq_hasFPowerSeriesOnBall_zero, one_div_sub_hasFPowerSeriesOnBall_zero, one_div_sub_pow_hasFPowerSeriesOnBall_zero, one_div_sub_sq_hasFPowerSeriesOnBall_zero, one_div_sub_sq_sub_one_div_sq_hasFPowerSeriesOnBall_zero, hasFPowerSeriesOnBall_linear_zero, hasFPowerSeriesOnBall_ofScalars_mul_add_zero, one_add_rpow_hasFPowerSeriesAt_zero, one_add_rpow_hasFPowerSeriesOnBall_zero, one_div_one_sub_hasFPowerSeriesOnBall_zero, one_div_one_sub_rpow_hasFPowerSeriesOnBall_zero, one_div_one_sub_sq_hasFPowerSeriesOnBall_zero, one_div_sub_hasFPowerSeriesOnBall_zero, one_div_sub_pow_hasFPowerSeriesOnBall_zero, one_div_sub_sq_hasFPowerSeriesOnBall_zero, binomialSeries_apply, binomialSeries_eq_ordinaryHypergeometricSeries, binomialSeries_radius_eq_one, binomialSeries_radius_eq_top_of_nat, binomialSeries_radius_ge_one, one_add_cpow_hasFPowerSeriesAt_zero, one_add_cpow_hasFPowerSeriesOnBall_zero, one_add_rpow_hasFPowerSeriesAt_zero, one_add_rpow_hasFPowerSeriesOnBall_zero
31
Total32

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
hasFPowerSeriesOnBall_ofScalars_mul_add_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instMul
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Algebra.to_smulCommClass
div_eq_mul_inv
one_mul
FormalMultilinearSeries.ext
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
HasFPowerSeriesOnBall.add
HasFPowerSeriesOnBall.const_smul
one_div_one_sub_hasFPowerSeriesOnBall_zero
one_div_one_sub_sq_hasFPowerSeriesOnBall_zero
ofReal_choose πŸ“–mathematicalβ€”ofReal
Ring.choose
Real
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Real.commRing
Monoid.toNatPow
Real.instMonoid
instBinomialRingOfModuleNNRat
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
Algebra.toModule
NNRat
instCommSemiringNNRat
Real.semiring
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
Real.instRCLike
Complex
commRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instField
instCharZero
β€”Ring.map_choose
RCLike.charZero_rclike
instCharZero
RingHom.instRingHomClass
one_add_cpow_hasFPowerSeriesAt_zero πŸ“–mathematicalβ€”HasFPowerSeriesAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
instPow
instAdd
instOne
binomialSeries
instField
instCharZero
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instZero
β€”HasFPowerSeriesOnBall.hasFPowerSeriesAt
instCharZero
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
one_add_cpow_hasFPowerSeriesOnBall_zero
one_add_cpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
instPow
instAdd
instOne
binomialSeries
instField
instCharZero
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
instCharZero
instNontrivial
eq_div_iff_mul_eq
nsmul_eq_mul'
Ring.descPochhammer_eq_factorial_smul_choose
Monoid.PowAssoc
iteratedDerivWithin_zero
Polynomial.smeval_one
pow_zero
one_smul
CharP.cast_eq_zero
CharP.ofCharZero
sub_zero
one_mul
iteratedDerivWithin_succ
derivWithin_congr
Set.EqOn.trans
derivWithin_of_isOpen
Metric.isOpen_ball
deriv_const_mul_field'
Nat.cast_add
Nat.cast_one
deriv_cpow_const
DifferentiableAt.const_add
differentiableAt_id
mem_slitPlane_of_norm_lt_one
dist_zero_right
deriv_const_add'
deriv_id''
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
mul_assoc
descPochhammer_succ_right
Polynomial.smeval_mul
IsScalarTower.right
Polynomial.smeval_sub
Polynomial.smeval_X
pow_one
Polynomial.smeval_natCast
nsmul_eq_mul
add_zero
one_cpow
iteratedDerivWithin_of_isOpen
dist_self
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
AnalyticOn.hasFPowerSeriesOnSubball
Mathlib.Meta.NormNum.isNat_lt_true
ENNReal.instIsOrderedRing
ENNReal.instCharZero
Nat.cast_zero
AnalyticOn.cpow
AnalyticOn.add
analyticOn_const
analyticOn_id
Metric.eball_ofReal
ENNReal.ofReal_one
binomialSeries_radius_ge_one
one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instBinomialRingOfModuleNNRat
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
instCharZero
instAdd
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
instCharZero
SeminormedAddCommGroup.toIsTopologicalAddGroup
FormalMultilinearSeries.ext
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
FormalMultilinearSeries.ofScalars.congr_simp
Ring.choose_neg
Monoid.PowAssoc
Int.coe_negOnePow_natCast
zsmul_eq_mul
Int.cast_pow
Int.cast_neg
Int.cast_one
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const
Fintype.card_fin
FormalMultilinearSeries.coeff_ofScalars
Even.neg_pow
one_pow
one_mul
Finset.prod_const_one
neg_zero
one_add_cpow_hasFPowerSeriesOnBall_zero
IsTopologicalAddGroup.toContinuousAdd
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
RingHomIsometric.ids
cpow_neg
enorm_neg
enorm_one
ContinuousLinearMap.normOneClass
EMetric.instNontrivialTopologyOfNontrivial
instNontrivial
div_one
HasFPowerSeriesOnBall.compContinuousLinearMap
one_div_one_sub_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.instOne
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
NeZero.charZero_one
instCharZero
one_pow
inv_one
enorm_one
NormedDivisionRing.to_normOneClass
one_div_sub_hasFPowerSeriesOnBall_zero
one_div_one_sub_pow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instNatCast
Nat.choose
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
instCharZero
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Nat.cast_one
cpow_natCast
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
add_right_comm
add_sub_cancel_right
Nat.cast_add
Ring.choose_natCast
Monoid.PowAssoc
Nat.choose_symm_add
one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero
one_div_one_sub_sq_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instAdd
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
NeZero.charZero_one
instCharZero
one_pow
inv_one
one_mul
enorm_one
NormedDivisionRing.to_normOneClass
one_div_sub_sq_hasFPowerSeriesOnBall_zero
one_div_sub_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instInv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
SeminormedAddGroup.toContinuousENorm
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
zero_add
pow_one
add_zero
Nat.choose_zero_right
Nat.cast_one
mul_one
one_div_sub_pow_hasFPowerSeriesOnBall_zero
one_div_sub_pow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instMul
instInv
instNatCast
Nat.choose
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
SeminormedAddGroup.toContinuousENorm
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
one_div_one_sub_pow_hasFPowerSeriesOnBall_zero
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomIsometric.ids
HasFPowerSeriesOnBall.compContinuousLinearMap
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
enorm_smul
instENormSMulClass
NormedSpace.toNormSMulClass
enorm_inv
enorm_one
ContinuousLinearMap.normOneClass
EMetric.instNontrivialTopologyOfNontrivial
instNontrivial
mul_one
one_div
inv_inv
FormalMultilinearSeries.ext
IsTopologicalSemiring.toContinuousAdd
SMulCommClass.continuousConstSMul
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
FormalMultilinearSeries.ofScalars.congr_simp
add_assoc
pow_add
mul_inv_rev
mul_assoc
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
one_mul
Finset.prod_congr
Finset.prod_inv_distrib
Finset.prod_const
Fintype.card_fin
HasFPowerSeriesOnBall.congr
HasFPowerSeriesOnBall.const_smul
sub_mul
mul_right_comm
inv_mul_cancelβ‚€
one_div_sub_sq_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instMul
instInv
instAdd
instNatCast
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
SeminormedAddGroup.toContinuousENorm
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
add_comm
Nat.choose_one_right
Nat.cast_add
Nat.cast_one
one_div_sub_pow_hasFPowerSeriesOnBall_zero
one_div_sub_sq_sub_one_div_sq_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
instSub
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
instMul
instAdd
instNatCast
DivInvMonoid.toZPow
Pi.instZero
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
SeminormedAddGroup.toContinuousENorm
β€”IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.sub_def
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.to_topologicalAddGroup
FormalMultilinearSeries.ofScalars_sub
HasFPowerSeriesOnBall.sub
zpow_neg
zpow_natCast
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
sub_sub_sub_cancel_right
sub_sq_comm
mul_comm
zero_add
HasFPowerSeriesOnBall.comp_sub
one_div_sub_sq_hasFPowerSeriesOnBall_zero
FormalMultilinearSeries.ext
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
FormalMultilinearSeries.ofScalars.congr_simp
zpow_ofNat
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_congr
Finset.univ_eq_empty
Fin.isEmpty'
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
one_mul
constFormalMultilinearSeries.congr_simp
one_div
FormalMultilinearSeries.ofScalars_eq_zero_of_scalar_zero
HasFPowerSeriesOnBall.mono
hasFPowerSeriesOnBall_const
le_top

Real

Theorems

NameKindAssumesProvesValidatesDepends On
hasFPowerSeriesOnBall_linear_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
instMonoid
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instMul
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”hasFPowerSeriesOnBall_ofScalars_mul_add_zero
hasFPowerSeriesOnBall_ofScalars_mul_add_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
instMonoid
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instMul
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”instIsTopologicalRingReal
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
isBoundedSMul
Algebra.to_smulCommClass
div_eq_mul_inv
one_mul
FormalMultilinearSeries.ext
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
HasFPowerSeriesOnBall.add
HasFPowerSeriesOnBall.const_smul
one_div_one_sub_hasFPowerSeriesOnBall_zero
one_div_one_sub_sq_hasFPowerSeriesOnBall_zero
one_add_rpow_hasFPowerSeriesAt_zero πŸ“–mathematicalβ€”HasFPowerSeriesAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
instPow
instAdd
instOne
binomialSeries
instField
RCLike.charZero_rclike
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instZero
β€”HasFPowerSeriesOnBall.hasFPowerSeriesAt
RCLike.charZero_rclike
instIsTopologicalRingReal
one_add_rpow_hasFPowerSeriesOnBall_zero
one_add_rpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
instPow
instAdd
instOne
binomialSeries
instField
RCLike.charZero_rclike
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
RCLike.charZero_rclike
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.right
Complex.instCharZero
FormalMultilinearSeries.ext
ContinuousMultilinearMap.ext
binomialSeries_apply
HasFPowerSeriesOnBall.restrictScalars
Complex.one_add_cpow_hasFPowerSeriesOnBall_zero
ContinuousLinearMap.map_zero
instIsTopologicalRingReal
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomIsometric.ids
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
List.ofFn_const
List.prod_replicate
one_pow
mul_one
ContinuousLinearMap.compContinuousMultilinearMap_coe
Complex.ofRealCLM_enorm
div_one
HasFPowerSeriesOnBall.congr
ContinuousLinearMap.comp_hasFPowerSeriesOnBall
HasFPowerSeriesOnBall.compContinuousLinearMap
Nat.cast_one
one_div_one_sub_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
Pi.instOne
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”instIsTopologicalRingReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
NeZero.charZero_one
RCLike.charZero_rclike
one_pow
inv_one
enorm_one
NormedDivisionRing.to_normOneClass
one_div_sub_hasFPowerSeriesOnBall_zero
one_div_one_sub_rpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
commRing
Monoid.toNatPow
instMonoid
instBinomialRingOfModuleNNRat
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
Algebra.toModule
NNRat
instCommSemiringNNRat
semiring
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
RCLike.charZero_rclike
instAdd
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.right
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instCharZero
HasFPowerSeriesOnBall.restrictScalars
Complex.one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero
instIsTopologicalRingReal
RCLike.charZero_rclike
RingHomIsometric.ids
FormalMultilinearSeries.ext
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
ContinuousLinearMap.compContinuousMultilinearMap_coe
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
one_mul
Finset.prod_congr
Nat.cast_one
Complex.ofRealCLM_enorm
div_one
HasFPowerSeriesOnBall.congr
ContinuousLinearMap.comp_hasFPowerSeriesOnBall
HasFPowerSeriesOnBall.compContinuousLinearMap
ContinuousLinearMap.map_zero
Complex.ofRealCLM_nnnorm
edist_zero_right
Complex.ofReal_cpow
Complex.div_ofReal_re
one_div
one_div_one_sub_sq_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instAdd
instNatCast
instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”instIsTopologicalRingReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
NeZero.charZero_one
RCLike.charZero_rclike
one_pow
inv_one
one_mul
enorm_one
NormedDivisionRing.to_normOneClass
one_div_sub_sq_hasFPowerSeriesOnBall_zero
one_div_sub_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instInv
Monoid.toNatPow
instMonoid
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
SeminormedAddGroup.toContinuousENorm
β€”instIsTopologicalRingReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
zero_add
pow_one
add_zero
Nat.choose_zero_right
Nat.cast_one
mul_one
one_div_sub_pow_hasFPowerSeriesOnBall_zero
one_div_sub_pow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instMul
instInv
instNatCast
Nat.choose
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
SeminormedAddGroup.toContinuousENorm
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.right
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
HasFPowerSeriesOnBall.restrictScalars
Complex.one_div_sub_pow_hasFPowerSeriesOnBall_zero
instIsTopologicalRingReal
RingHomIsometric.ids
one_div
FormalMultilinearSeries.ext
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
ContinuousMultilinearMap.ext_ring
Finite.of_fintype
ContinuousLinearMap.compContinuousMultilinearMap_coe
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Finset.prod_const_one
FormalMultilinearSeries.coeff_ofScalars
one_mul
ContinuousMultilinearMap.restrictScalars.congr_simp
FormalMultilinearSeries.ofScalars.congr_simp
Finset.prod_congr
MulZeroClass.mul_zero
sub_zero
Complex.nnnorm_real
Complex.ofRealCLM_nnnorm
div_one
ContinuousLinearMap.comp_hasFPowerSeriesOnBall
HasFPowerSeriesOnBall.compContinuousLinearMap
ContinuousLinearMap.map_zero
one_div_sub_sq_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instSub
FormalMultilinearSeries.ofScalars
instField
instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instIsTopologicalRingReal
instMul
instInv
instAdd
instNatCast
instZero
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
SeminormedAddGroup.toContinuousENorm
β€”instIsTopologicalRingReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
one_div
add_comm
Nat.choose_one_right
Nat.cast_add
Nat.cast_one
one_div_sub_pow_hasFPowerSeriesOnBall_zero

(root)

Definitions

NameCategoryTheorems
binomialSeries πŸ“–CompOp
13 mathmath: binomialSeries_eq_ordinaryHypergeometricSeries, one_add_cpow_hasFPowerSeriesAt_zero, Real.one_add_rpow_hasFPowerSeriesOnBall_zero, binomialSeries_radius_eq_one, binomialSeries_apply, Complex.one_add_cpow_hasFPowerSeriesAt_zero, binomialSeries_radius_eq_top_of_nat, Real.one_add_rpow_hasFPowerSeriesAt_zero, one_add_rpow_hasFPowerSeriesAt_zero, one_add_cpow_hasFPowerSeriesOnBall_zero, Complex.one_add_cpow_hasFPowerSeriesOnBall_zero, one_add_rpow_hasFPowerSeriesOnBall_zero, binomialSeries_radius_ge_one

Theorems

NameKindAssumesProvesValidatesDepends On
binomialSeries_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
ContinuousMultilinearMap.funLike
binomialSeries
Algebra.toSMul
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instBinomialRingOfModuleNNRat
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
binomialSeries_eq_ordinaryHypergeometricSeries πŸ“–mathematicalβ€”binomialSeries
FormalMultilinearSeries.compContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
ordinaryHypergeometricSeries
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.neg
IsTopologicalRing.to_topologicalAddGroup
ContinuousLinearMap.id
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.to_topologicalAddGroup
FormalMultilinearSeries.ofScalars_comp_neg_id
ordinaryHypergeometricCoefficient.eq_1
mul_inv_cancel_rightβ‚€
instIsDomain
Ring.choose_eq_smul
Polynomial.descPochhammer_smeval_eq_ascPochhammer
Monoid.PowAssoc
Polynomial.ascPochhammer_smeval_cast
IsScalarTower.right
Polynomial.ascPochhammer_smeval_eq_eval
ascPochhammer_eval_neg_eq_descPochhammer
descPochhammer_eval_eq_ascPochhammer
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.RingNF.mul_assoc_rev
Even.neg_pow
Distrib.leftDistribClass
one_pow
binomialSeries_radius_eq_one πŸ“–mathematicalβ€”FormalMultilinearSeries.radius
DenselyNormedField.toNontriviallyNormedField
RCLike.toDenselyNormedField
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
NormedDivisionRing.toNormedRing
NormedAlgebra.toNormedSpace
NontriviallyNormedField.toNormedField
NormedRing.toSeminormedRing
binomialSeries
NormedField.toField
DenselyNormedField.toNormedField
RCLike.charZero_rclike
NormedRing.toRing
NormedAlgebra.toAlgebra
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”RCLike.charZero_rclike
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.to_topologicalAddGroup
binomialSeries_eq_ordinaryHypergeometricSeries
Nat.cast_one
Int.cast_natCast
FormalMultilinearSeries.radius_compNeg
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ordinaryHypergeometricSeries_radius_eq_one
binomialSeries_radius_eq_top_of_nat πŸ“–mathematicalβ€”FormalMultilinearSeries.radius
DenselyNormedField.toNontriviallyNormedField
RCLike.toDenselyNormedField
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
NormedDivisionRing.toNormedRing
NormedAlgebra.toNormedSpace
NontriviallyNormedField.toNormedField
NormedRing.toSeminormedRing
binomialSeries
NormedField.toField
DenselyNormedField.toNormedField
RCLike.charZero_rclike
NormedRing.toRing
NormedAlgebra.toAlgebra
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Top.top
ENNReal
instTopENNReal
β€”RCLike.charZero_rclike
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.to_topologicalAddGroup
binomialSeries_eq_ordinaryHypergeometricSeries
Nat.cast_one
Int.cast_natCast
FormalMultilinearSeries.radius_compNeg
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ordinaryHypergeometric_radius_top_of_neg_nat₁
binomialSeries_radius_ge_one πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
FormalMultilinearSeries.radius
DenselyNormedField.toNontriviallyNormedField
RCLike.toDenselyNormedField
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
NormedDivisionRing.toNormedRing
NormedAlgebra.toNormedSpace
NontriviallyNormedField.toNormedField
NormedRing.toSeminormedRing
binomialSeries
NormedField.toField
DenselyNormedField.toNormedField
RCLike.charZero_rclike
NormedRing.toRing
NormedAlgebra.toAlgebra
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
β€”RCLike.charZero_rclike
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
binomialSeries_radius_eq_one
le_refl
Mathlib.Tactic.Push.not_forall_eq
binomialSeries_radius_eq_top_of_nat
one_add_cpow_hasFPowerSeriesAt_zero πŸ“–mathematicalβ€”HasFPowerSeriesAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instPow
Complex.instAdd
Complex.instOne
binomialSeries
Complex.instField
Complex.instCharZero
Complex.instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instZero
β€”Complex.one_add_cpow_hasFPowerSeriesAt_zero
one_add_cpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instPow
Complex.instAdd
Complex.instOne
binomialSeries
Complex.instField
Complex.instCharZero
Complex.instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Complex.one_add_cpow_hasFPowerSeriesOnBall_zero
one_add_rpow_hasFPowerSeriesAt_zero πŸ“–mathematicalβ€”HasFPowerSeriesAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instPow
Real.instAdd
Real.instOne
binomialSeries
Real.instField
RCLike.charZero_rclike
Real.instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instIsTopologicalRingReal
Real.instZero
β€”Real.one_add_rpow_hasFPowerSeriesAt_zero
one_add_rpow_hasFPowerSeriesOnBall_zero πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instPow
Real.instAdd
Real.instOne
binomialSeries
Real.instField
RCLike.charZero_rclike
Real.instRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instIsTopologicalRingReal
Real.instZero
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Real.one_add_rpow_hasFPowerSeriesOnBall_zero

---

← Back to Index