Documentation Verification Report

Order

πŸ“ Source: Mathlib/Analysis/Analytic/Order.lean

Statistics

MetricCount
DefinitionsanalyticOrderAt, analyticOrderNatAt
2
TheoremsanalyticOrderAt_comp, analyticOrderAt_deriv_add_one, analyticOrderAt_eq_natCast, analyticOrderAt_eq_zero, analyticOrderAt_ne_top, analyticOrderAt_ne_zero, analyticOrderAt_sub_eq_one_of_deriv_ne_zero, analyticOrderNatAt_eq_iff, exists_eq_sum_add_pow_mul, exists_eventuallyEq_sum_add_pow_mul, analyticOrderAt_ne_top_of_isPreconnected, codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top, codiscrete_setOf_analyticOrderAt_eq_zero_or_top, exists_analyticOrderAt_ne_top_iff_forall, isClopen_setOf_analyticOrderAt_eq_top, preimage_zero_mem_codiscrete, preimage_zero_mem_codiscreteWithin, cast_analyticOrderNatAt, analyticOrderAt_add_eq_left_of_lt, analyticOrderAt_add_eq_right_of_lt, analyticOrderAt_add_of_ne, analyticOrderAt_centeredMonomial, analyticOrderAt_comp_of_deriv_ne_zero, analyticOrderAt_congr, analyticOrderAt_eq_top, analyticOrderAt_eq_zero, analyticOrderAt_id, analyticOrderAt_mul, analyticOrderAt_mul_eq_top_of_left, analyticOrderAt_mul_eq_top_of_right, analyticOrderAt_ne_zero, analyticOrderAt_neg, analyticOrderAt_of_not_analyticAt, analyticOrderAt_pow, analyticOrderAt_smul, analyticOrderAt_smul_eq_top_of_left, analyticOrderAt_smul_eq_top_of_right, analyticOrderNatAt_mul, analyticOrderNatAt_of_not_analyticAt, analyticOrderNatAt_pow, apply_eq_zero_of_analyticOrderAt_ne_zero, apply_eq_zero_of_analyticOrderNatAt_ne_zero, eventuallyConst_iff_analyticOrderAt_sub_eq_top, le_analyticOrderAt_add, le_analyticOrderAt_sub, natCast_le_analyticOrderAt, natCast_le_analyticOrderAt_iff_iteratedDeriv_eq_zero
47
Total49

AnalyticAt

Theorems

NameKindAssumesProvesValidatesDepends On
analyticOrderAt_comp πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Filter.EventuallyConst.comp
eventuallyConst_iff_analyticOrderAt_sub_eq_top
ENat.mul_top
sub_zero
MulZeroClass.zero_mul
analyticOrderAt_eq_top
Filter.EventuallyEq.comp_tendsto
continuousAt
ENat.top_mul
analyticOrderAt_ne_zero
fun_sub
analyticAt_const
sub_eq_zero
ENat.ne_top_iff_exists
ENat.coe_mul
analyticOrderAt_eq_natCast
comp
fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
fun_pow
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Field.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Filter.mp_mem
Filter.univ_mem'
mul_pow
SemigroupAction.mul_smul
mul_comm
pow_mul
analyticOrderAt_deriv_add_one πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
analyticOrderAt
deriv
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”eventually_nhds_iff
Filter.mp_mem
IsOpen.mem_nhds
Filter.univ_mem'
Filter.EventuallyEq.deriv_eq
Filter.eventuallyEq_of_mem
deriv_const'
top_add
analyticOrderAt_eq_zero
fun_sub
analyticAt_const
ENat.coe_zero
Nat.cast_succ
analyticOrderAt_eq_natCast
Filter.Eventually.and
eventually_analyticAt
Filter.eventually_of_mem
deriv_add_const
deriv_fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
DifferentiableAt.fun_pow
DifferentiableAt.sub_const
differentiableAt_id
differentiableAt
deriv_fun_pow
Nat.cast_add
Nat.cast_one
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
deriv_fun_sub
deriv_id''
sub_zero
mul_one
SemigroupAction.mul_smul
add_smul
Nat.cast_smul_eq_nsmul
one_smul
analyticOrderAt_congr
fun_const_smul
smulCommClass_self
fun_smul
fun_pow
analyticAt_id
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Field.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
Nat.cast_zero
Filter.Eventually.of_forall
SMulCommClass.smul_comm
AddMonoid.nat_smulCommClass
Pi.add_def
analyticOrderAt_add_eq_right_of_lt
Order.succ_le_iff_of_not_isMax
not_isMax_iff
ENat.coe_lt_top
ENat.succ_def
Nat.cast_add_one
natCast_le_analyticOrderAt
deriv
analyticOrderAt_eq_natCast πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
ENat
ENat.instNatCast
Filter.Eventually
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Monoid.toNatPow
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
nhds
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
β€”Mathlib.Tactic.Contrapose.contrapose₃
exists_eventuallyEq_pow_smul_nonzero_iff
unique_eventuallyEq_pow_smul_nonzero
analyticOrderAt_eq_zero πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
ENat
instZeroENat
β€”β€”
analyticOrderAt_ne_top πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Filter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Monoid.toNatPow
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
analyticOrderNatAt
β€”analyticOrderAt_eq_natCast
analyticOrderAt_ne_zero πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Iff.not_left
analyticOrderAt_eq_zero
analyticOrderAt_sub_eq_one_of_deriv_ne_zero πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Filter.EventuallyEq.deriv_eq
deriv_const
Nat.cast_one
analyticOrderAt_eq_natCast
fun_sub
analyticAt_const
eq_of_ge_of_le
Filter.Eventually.self_of_nhds
sub_self
pow_zero
one_smul
Mathlib.Tactic.Contrapose.contraposeβ‚‚
deriv_add_const
deriv_fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
DifferentiableAt.fun_pow
DifferentiableAt.sub_const
differentiableAt_id
differentiableAt
deriv_fun_pow
zero_pow
MulZeroClass.mul_zero
MulZeroClass.zero_mul
zero_smul
add_zero
analyticOrderNatAt_eq_iff πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderNatAt
Filter.Eventually
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Monoid.toNatPow
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
nhds
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
β€”Nat.cast_analyticOrderNatAt
analyticOrderAt_eq_natCast
exists_eq_sum_add_pow_mul πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.sum
Finset.range
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
NormedSpace.toModule
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Monoid.toNatPow
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
Nat.factorial
iteratedDeriv
β€”exists_eventuallyEq_sum_add_pow_mul
Filter.eventually_iff_exists_mem
congr
Filter.mp_mem
Filter.univ_mem'
smul_inv_smulβ‚€
Mathlib.Tactic.Contrapose.contraposeβ‚„
mem_of_mem_nhds
pow_eq_zero_iff'
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₃
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Module.NF.eq_const_cons
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
exists_eventuallyEq_sum_add_pow_mul πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
Filter.Eventually
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.sum
Finset.range
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
NormedSpace.toModule
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Monoid.toNatPow
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
Nat.factorial
iteratedDeriv
nhds
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
β€”Finset.analyticAt_fun_sum
fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
div_const
fun_pow
analyticAt_id
analyticAt_const
sub_zero
natCast_le_analyticOrderAt
fun_sub
natCast_le_analyticOrderAt_iff_iteratedDeriv_eq_zero
iteratedDeriv_fun_sub
contDiffAt
iteratedDeriv_fun_sum
ContDiffAt.smul_const
ContDiffAt.div_const
ContDiffAt.pow
contDiffAt_fun_id
Finset.sum_congr
iteratedDeriv_smul_const
iteratedDeriv_div_const
iteratedDeriv_fun_pow_zero
Nat.cast_ite
CharP.cast_eq_zero
CharP.ofCharZero
ite_div
div_self
zero_div
ite_smul
one_smul
zero_smul
Finset.sum_ite_eq_of_mem
Finset.mem_range
sub_self

AnalyticOnNhd

Theorems

NameKindAssumesProvesValidatesDepends On
analyticOrderAt_ne_top_of_isPreconnected πŸ“–β€”AnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Set
Set.instMembership
β€”β€”exists_analyticOrderAt_ne_top_iff_forall
Set.nonempty_of_mem
codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top πŸ“–mathematicalAnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Set
Filter
Filter.instMembership
Filter.codiscreteWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
setOf
ENat
analyticOrderAt
instZeroENat
Top.top
instTopENat
β€”AnalyticAt.eventually_eq_zero_or_eventually_ne_zero
Filter.mp_mem
eventually_nhdsWithin_of_eventually_nhds
Filter.Eventually.eventually_nhds
Filter.univ_mem'
AnalyticAt.analyticOrderAt_eq_zero
codiscrete_setOf_analyticOrderAt_eq_zero_or_top πŸ“–mathematicalAnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Set
Set.Elem
Filter
Filter.instMembership
Filter.codiscrete
instTopologicalSpaceSubtype
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
setOf
ENat
analyticOrderAt
instZeroENat
Top.top
instTopENat
β€”AnalyticAt.eventually_eq_zero_or_eventually_ne_zero
Filter.mp_mem
eventually_nhdsWithin_of_eventually_nhds
Filter.Eventually.eventually_nhds
Filter.univ_mem'
AnalyticAt.analyticOrderAt_eq_zero
exists_analyticOrderAt_ne_top_iff_forall πŸ“–β€”AnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
β€”β€”Subtype.connectedSpace
ConnectedSpace.toNonempty
isClopen_iff
ConnectedSpace.toPreconnectedSpace
isClopen_setOf_analyticOrderAt_eq_top
isClopen_setOf_analyticOrderAt_eq_top πŸ“–mathematicalAnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
IsClopen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
setOf
ENat
analyticOrderAt
Top.top
instTopENat
β€”isOpen_compl_iff
isOpen_iff_forall_mem_open
AnalyticAt.eventually_eq_zero_or_eventually_ne_zero
analyticOrderAt_eq_top
eventually_nhds_iff
eventually_nhdsWithin_iff
AnalyticAt.analyticOrderAt_eq_zero
Subtype.coe_ne_coe
ENat.zero_ne_top
isOpen_induced
preimage_zero_mem_codiscrete πŸ“–mathematicalAnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Set.univ
Set
Filter
Filter.instMembership
Filter.codiscrete
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Set.preimage
Compl.compl
Set.instCompl
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”preimage_zero_mem_codiscreteWithin
isConnected_univ
preimage_zero_mem_codiscreteWithin πŸ“–mathematicalAnalyticOnNhd
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Set
Set.instMembership
IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Filter
Filter.instMembership
Filter.codiscreteWithin
Set.preimage
Compl.compl
Set.instCompl
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Filter.mp_mem
Filter.self_mem_codiscreteWithin
codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top
Filter.univ_mem'
exists_analyticOrderAt_ne_top_iff_forall
AnalyticAt.analyticOrderAt_eq_zero

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_analyticOrderNatAt πŸ“–mathematicalβ€”ENat
ENat.instNatCast
analyticOrderNatAt
analyticOrderAt
β€”ENat.coe_toNat

(root)

Definitions

NameCategoryTheorems
analyticOrderAt πŸ“–CompOp
28 mathmath: AnalyticAt.meromorphicOrderAt_eq, analyticOrderAt_eq_top, Nat.cast_analyticOrderNatAt, analyticOrderAt_comp_of_deriv_ne_zero, analyticOrderAt_centeredMonomial, natCast_le_analyticOrderAt, AnalyticAt.analyticOrderAt_deriv_add_one, analyticOrderAt_congr, analyticOrderAt_mul, AnalyticAt.analyticOrderAt_eq_natCast, analyticOrderAt_neg, AnalyticOnNhd.codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top, le_analyticOrderAt_sub, le_analyticOrderAt_add, analyticOrderAt_pow, analyticOrderAt_id, AnalyticAt.analyticOrderAt_comp, AnalyticOnNhd.isClopen_setOf_analyticOrderAt_eq_top, AnalyticOnNhd.codiscrete_setOf_analyticOrderAt_eq_zero_or_top, eventuallyConst_iff_analyticOrderAt_sub_eq_top, analyticOrderAt_of_not_analyticAt, analyticOrderAt_smul, analyticOrderAt_eq_zero, AnalyticAt.analyticOrderAt_sub_eq_one_of_deriv_ne_zero, natCast_le_analyticOrderAt_iff_iteratedDeriv_eq_zero, analyticOrderAt_add_of_ne, MeromorphicAt.meromorphicOrderAt_comp, AnalyticAt.analyticOrderAt_eq_zero
analyticOrderNatAt πŸ“–CompOp
6 mathmath: Nat.cast_analyticOrderNatAt, AnalyticAt.analyticOrderNatAt_eq_iff, analyticOrderNatAt_of_not_analyticAt, AnalyticAt.analyticOrderAt_ne_top, analyticOrderNatAt_pow, analyticOrderNatAt_mul

Theorems

NameKindAssumesProvesValidatesDepends On
analyticOrderAt_add_eq_left_of_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
analyticOrderAt
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”le_antisymm
add_sub_cancel_right
LT.lt.not_ge
le_analyticOrderAt_sub
inf_of_le_left
LT.lt.le
le_analyticOrderAt_add
analyticOrderAt_add_eq_right_of_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
analyticOrderAt
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”add_comm
analyticOrderAt_add_eq_left_of_lt
analyticOrderAt_add_of_ne πŸ“–mathematicalβ€”analyticOrderAt
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”Ne.lt_or_gt
inf_of_le_left
LT.lt.le
analyticOrderAt_add_eq_left_of_lt
inf_of_le_right
analyticOrderAt_add_eq_right_of_lt
analyticOrderAt_centeredMonomial πŸ“–mathematicalβ€”analyticOrderAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Pi.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ENat
ENat.instNatCast
β€”AnalyticAt.analyticOrderAt_eq_natCast
AnalyticAt.pow
AnalyticAt.fun_sub
analyticAt_id
analyticAt_const
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mul_one
analyticOrderAt_comp_of_deriv_ne_zero πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAtβ€”AnalyticAt.analyticOrderAt_comp
AnalyticAt.analyticOrderAt_sub_eq_one_of_deriv_ne_zero
mul_one
analyticOrderAt_of_not_analyticAt
analyticAt_comp_iff_of_deriv_ne_zero
analyticOrderAt_congr πŸ“–mathematicalFilter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
analyticOrderAtβ€”ENat.eq_of_forall_natCast_le_iff
AnalyticAt.congr
Filter.EventuallyEq.congr_left
analyticOrderAt_of_not_analyticAt
Filter.EventuallyEq.symm
analyticOrderAt_eq_top πŸ“–mathematicalβ€”analyticOrderAt
Top.top
ENat
instTopENat
Filter.Eventually
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
β€”analyticAt_congr
analyticOrderAt_eq_zero πŸ“–mathematicalβ€”analyticOrderAt
ENat
instZeroENat
AnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
β€”ENat.coe_zero
AnalyticAt.analyticOrderAt_eq_natCast
Filter.Eventually.self_of_nhds
sub_self
pow_zero
one_smul
analyticOrderAt_of_not_analyticAt
analyticOrderAt_id πŸ“–mathematicalβ€”analyticOrderAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”AnalyticAt.analyticOrderAt_eq_natCast
analyticAt_id
analyticAt_const
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_zero
pow_one
mul_one
analyticOrderAt_mul πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
ENat
Distrib.toAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”analyticOrderAt_smul
analyticOrderAt_mul_eq_top_of_left πŸ“–mathematicalanalyticOrderAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Top.top
ENat
instTopENat
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”analyticOrderAt_smul_eq_top_of_left
analyticOrderAt_mul_eq_top_of_right πŸ“–mathematicalanalyticOrderAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Top.top
ENat
instTopENat
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”analyticOrderAt_smul_eq_top_of_right
analyticOrderAt_ne_zero πŸ“–mathematicalβ€”AnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”
analyticOrderAt_neg πŸ“–mathematicalβ€”analyticOrderAt
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”ENat.eq_of_forall_natCast_le_iff
AnalyticAt.neg
Equiv.exists_congr
smul_neg
analyticOrderAt_of_not_analyticAt
Iff.not
analyticAt_neg
analyticOrderAt_of_not_analyticAt πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
ENat
instZeroENat
β€”β€”
analyticOrderAt_pow πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
Monoid.toNatPow
Pi.monoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ENat
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”pow_zero
zero_nsmul
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
pow_add
pow_one
analyticOrderAt_mul
AnalyticAt.pow
nsmul_eq_mul
Nat.cast_add
Nat.cast_one
add_mul
Distrib.rightDistribClass
one_mul
analyticOrderAt_smul πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderAt
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”analyticOrderAt_smul_eq_top_of_left
top_add
analyticOrderAt_smul_eq_top_of_right
add_top
AnalyticAt.analyticOrderAt_ne_top
Nat.cast_analyticOrderNatAt
ENat.coe_add
AnalyticAt.analyticOrderAt_eq_natCast
AnalyticAt.smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Field.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
eventually_nhds_iff
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
IsOpen.inter
analyticOrderAt_smul_eq_top_of_left πŸ“–mathematicalanalyticOrderAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Top.top
ENat
instTopENat
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”analyticOrderAt_eq_top
eventually_nhds_iff
zero_smul
analyticOrderAt_smul_eq_top_of_right πŸ“–mathematicalanalyticOrderAt
Top.top
ENat
instTopENat
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”analyticOrderAt_eq_top
eventually_nhds_iff
smul_zero
analyticOrderNatAt_mul πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderNatAt
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”analyticOrderAt_mul
ENat.toNat_add
analyticOrderNatAt_of_not_analyticAt πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderNatAtβ€”analyticOrderAt_of_not_analyticAt
analyticOrderNatAt_pow πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
analyticOrderNatAt
Pi.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
AddMonoid.toNatSMul
Nat.instAddMonoid
β€”analyticOrderAt_pow
nsmul_eq_mul
ENat.toNat_mul
apply_eq_zero_of_analyticOrderAt_ne_zero πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”analyticOrderAt_of_not_analyticAt
apply_eq_zero_of_analyticOrderNatAt_ne_zero πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”analyticOrderAt_of_not_analyticAt
eventuallyConst_iff_analyticOrderAt_sub_eq_top πŸ“–mathematicalβ€”Filter.EventuallyConst
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
analyticOrderAt
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Top.top
ENat
instTopENat
β€”AddTorsor.nonempty
Filter.Eventually.self_of_nhds
le_analyticOrderAt_add πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
analyticOrderAt
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”ENat.forall_natCast_le_iff_le
AnalyticAt.add
Filter.mp_mem
Filter.univ_mem'
smul_add
analyticOrderAt_of_not_analyticAt
inf_of_le_right
inf_of_le_left
le_analyticOrderAt_sub πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
analyticOrderAt
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
analyticOrderAt_neg
le_analyticOrderAt_add
natCast_le_analyticOrderAt πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
analyticOrderAt
Filter.Eventually
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Monoid.toNatPow
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
nhds
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
β€”analyticAt_const
smul_zero
AnalyticAt.exists_eventuallyEq_pow_smul_nonzero_iff
ENat.coe_le_coe
AnalyticAt.fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
AnalyticAt.fun_pow
AnalyticAt.fun_sub
analyticAt_id
Filter.mp_mem
Filter.univ_mem'
SemigroupAction.mul_smul
pow_add
Mathlib.Tactic.Contrapose.contraposeβ‚‚
ContinuousAt.smul
IsBoundedSMul.continuousSMul
ContinuousAt.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousAt.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousAt_id'
continuousAt_const
AnalyticAt.continuousAt
tendsto_nhds_unique_of_eventuallyEq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
PerfectSpace.not_isolated
instPerfectSpace
ContinuousAt.continuousWithinAt
Filter.Eventually.filter_mono
nhdsWithin_le_nhds
self_mem_nhdsWithin
pow_subβ‚€
sub_ne_zero_of_ne
SMulCommClass.smul_comm
smulCommClass_self
inv_smul_eq_iffβ‚€
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sub_self
zero_pow
zero_smul
natCast_le_analyticOrderAt_iff_iteratedDeriv_eq_zero πŸ“–mathematicalAnalyticAt
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
analyticOrderAt
iteratedDeriv
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”CharP.cast_eq_zero
CharP.ofCharZero
Nat.instCanonicallyOrderedAdd
instIsEmptyFalse
sub_zero
AnalyticAt.analyticOrderAt_deriv_add_one
Nat.cast_add
Nat.cast_one
AnalyticAt.deriv
iteratedDeriv_zero
iteratedDeriv_succ'
analyticOrderAt_eq_zero
Unique.instSubsingleton
NeZero.charZero_one
Nat.instNoMaxOrder

---

← Back to Index