Documentation Verification Report

AsymptoticEquivalent

πŸ“ Source: Mathlib/Analysis/Asymptotics/AsymptoticEquivalent.lean

Statistics

MetricCount
DefinitionstransEventuallyEqIsEquivalent, transIsBigOIsEquivalent, transIsEquivalentEventuallyEq, transIsEquivalentIsBigO, transIsEquivalentIsEquivalent, transIsEquivalentIsLittleO, transIsEquivalentIsTheta, transIsLittleOIsEquivalent, transIsThetaIsEquivalent
9
Theoremstrans_isEquivalent, add_add_of_nonneg, add_const_of_norm_tendsto_atTop, add_isLittleO, comp_tendsto, congr_left, congr_right, const_add_of_norm_tendsto_atTop, div, exists_eq_mul, finsetProd, inv, isBigO, isBigO_symm, isLittleO, isTheta, isTheta_symm, listProd, mono, mul, multisetProd, neg, pow, refl, smul, sub_isLittleO, tendsto_atBot, tendsto_atBot_iff, tendsto_atTop, tendsto_atTop_iff, tendsto_const, tendsto_nhds, tendsto_nhds_iff, trans, trans_eventuallyEq, trans_isBigO, trans_isLittleO, trans_isTheta, zpow, add_isEquivalent, isEquivalent, trans_isEquivalent, trans_isEquivalent, isEquivalent_const_iff_tendsto, isEquivalent_iff_exists_eq_mul, isEquivalent_iff_tendsto_one, isEquivalent_map, isEquivalent_of_tendsto_one, isEquivalent_of_tendsto_one', isEquivalent_zero_iff_eventually_zero, isEquivalent_zero_iff_isBigO_zero, isEquivalent, trans_isEquivalent
53
Total62

Asymptotics

Definitions

NameCategoryTheorems
transEventuallyEqIsEquivalent πŸ“–CompOpβ€”
transIsBigOIsEquivalent πŸ“–CompOpβ€”
transIsEquivalentEventuallyEq πŸ“–CompOpβ€”
transIsEquivalentIsBigO πŸ“–CompOpβ€”
transIsEquivalentIsEquivalent πŸ“–CompOpβ€”
transIsEquivalentIsLittleO πŸ“–CompOpβ€”
transIsEquivalentIsTheta πŸ“–CompOpβ€”
transIsLittleOIsEquivalent πŸ“–CompOpβ€”
transIsThetaIsEquivalent πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalent_const_iff_tendsto πŸ“–mathematicalβ€”IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”isLittleO_const_iff
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_const_nhds
sub_neg_eq_add
sub_add_cancel
zero_add
sub_self
isEquivalent_iff_exists_eq_mul πŸ“–mathematicalβ€”IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”IsEquivalent.eq_1
isLittleO_iff_exists_eq_mul
zero_add
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tendsto_const_nhds
sub_add_cancel
add_mul
Distrib.rightDistribClass
one_mul
Filter.EventuallyEq.fun_add
Filter.EventuallyEq.refl
sub_self
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
sub_mul
Filter.EventuallyEq.fun_sub
isEquivalent_iff_tendsto_one πŸ“–mathematicalFilter.Eventually
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Filter.Tendsto
Pi.instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”IsLittleO.tendsto_div_nhds_zero
IsEquivalent.isLittleO
Filter.tendsto_congr'
Filter.Eventually.mono
div_self
tendsto_const_nhds
sub_add_cancel
zero_add
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
sub_div
isEquivalent_of_tendsto_one
isEquivalent_map πŸ“–mathematicalβ€”IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.map
β€”isLittleO_map
isEquivalent_of_tendsto_one πŸ“–mathematicalFilter.Tendsto
Pi.instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
β€”Filter.Frequently.mono
div_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
tendsto_nhds_unique_of_frequently_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
tendsto_const_nhds
isEquivalent_iff_exists_eq_mul
Filter.Eventually.mono
div_mul_cancel_of_imp
isEquivalent_of_tendsto_one' πŸ“–mathematicalFilter.Tendsto
Pi.instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
β€”isEquivalent_of_tendsto_one
isEquivalent_zero_iff_eventually_zero πŸ“–mathematicalβ€”IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Filter.EventuallyEq
β€”IsEquivalent.eq_1
sub_zero
isLittleO_zero_right_iff
isEquivalent_zero_iff_isBigO_zero πŸ“–mathematicalβ€”IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
IsBigO
NormedAddCommGroup.toNorm
β€”IsEquivalent.isBigO
isEquivalent_zero_iff_eventually_zero
Filter.eventuallyEq_iff_exists_mem
isBigO_zero_right_iff

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
trans_isEquivalent πŸ“–β€”Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”trans
Asymptotics.IsEquivalent.isBigO

Asymptotics.IsEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
add_add_of_nonneg πŸ“–mathematicalPi.hasLe
Real
Real.instLE
Pi.instZero
Real.instZero
Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Pi.instAdd
Real.instAdd
β€”add_sub_add_comm
abs_eq_self
Real.instIsOrderedAddMonoid
Asymptotics.IsLittleO.add_add
add_const_of_norm_tendsto_atTop πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
Real
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
Real.instPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”add_isLittleO
Asymptotics.isLittleO_const_left
add_isLittleO πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”add_sub_right_comm
Asymptotics.IsLittleO.add
comp_tendsto πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
β€”β€”Asymptotics.IsLittleO.comp_tendsto
congr_left πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.EventuallyEq
β€”β€”Asymptotics.IsLittleO.congr'
Filter.EventuallyEq.sub
Filter.EventuallyEq.refl
congr_right πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.EventuallyEq
β€”β€”symm
congr_left
const_add_of_norm_tendsto_atTop πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
Real
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
Real.instPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Asymptotics.IsLittleO.add_isEquivalent
Asymptotics.isLittleO_const_left
div πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
β€”div_eq_mul_inv
mul
inv
exists_eq_mul πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”Asymptotics.isEquivalent_iff_exists_eq_mul
finsetProd πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Finset.prod
CommRing.toCommMonoid
Field.toCommRing
NormedField.toField
β€”multisetProd
inv πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
β€”Asymptotics.isEquivalent_iff_exists_eq_mul
inv_one
Filter.Tendsto.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mul_comm
mul_inv_rev
Filter.EventuallyEq.fun_inv
isBigO πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
β€”Asymptotics.IsBigO.congr_of_sub
Asymptotics.IsBigO.symm
Asymptotics.IsLittleO.isBigO
Asymptotics.isBigO_refl
isBigO_symm πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
β€”sub_add_cancel
Asymptotics.IsLittleO.right_isBigO_add
isLittleO
isLittleO πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”β€”
isTheta πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsTheta
NormedAddCommGroup.toNorm
β€”isBigO
isBigO_symm
isTheta_symm πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsTheta
NormedAddCommGroup.toNorm
β€”isBigO_symm
isBigO
listProd πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”mul
mono πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Asymptotics.IsLittleO.mono
mul πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”smul
multisetProd πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Multiset.prod
CommRing.toCommMonoid
Field.toCommRing
NormedField.toField
Multiset.map
β€”Quotient.mk_surjective
listProd
neg πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”eq_1
sub_neg_eq_add
neg_add_eq_sub
neg_sub
Asymptotics.IsLittleO.neg_right
Asymptotics.IsLittleO.neg_left
isLittleO
pow πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
β€”pow_zero
refl
pow_succ
mul
refl πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”eq_1
sub_self
Asymptotics.isLittleO_zero
smul πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedAddCommGroup.toSeminormedAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”exists_eq_mul
Pi.mul_apply
mul_comm
SemigroupAction.mul_smul
smul_sub
Filter.EventuallyEq.fun_sub
Filter.EventuallyEq.compβ‚‚
Filter.EventuallyEq.refl
Asymptotics.isLittleO_congr
Filter.EventuallyEq.symm
Filter.EventuallyEq.rfl
Asymptotics.IsBigO.smul_isLittleO
NormedSpace.toIsBoundedSMul
NormedSpace.toNormSMulClass
Asymptotics.isBigO_refl
Asymptotics.IsBigO.exists_pos
isBigO
Asymptotics.isLittleO_iff
Filter.Eventually.mp
Nat.instAtLeastTwoHAddOfNat
dist_eq_norm
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
eq_1
Filter.Eventually.mono
Asymptotics.IsBigOWith_def
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_lt
norm_nonneg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
sub_smul
one_smul
sub_add
sub_sub_cancel
norm_add_le
norm_smul
add_le_add_left
covariant_swap_add_of_covariant_add
add_le_add_right
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sub_isLittleO πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
add_isLittleO
Asymptotics.IsLittleO.neg_left
tendsto_atBot πŸ“–β€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”neg_neg
Filter.Tendsto.comp
Filter.tendsto_neg_atTop_atBot
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
tendsto_atTop
neg
Filter.tendsto_neg_atBot_atTop
tendsto_atBot_iff πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”tendsto_atBot
symm
tendsto_atTop πŸ“–β€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”exists_eq_mul
symm
Filter.Tendsto.congr'
Filter.EventuallyEq.symm
Filter.Tendsto.atTop_mul_pos
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
mul_comm
tendsto_atTop_iff πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”tendsto_atTop
symm
tendsto_const πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”em
Filter.tendsto_congr'
Asymptotics.isEquivalent_zero_iff_eventually_zero
tendsto_const_nhds
Asymptotics.isEquivalent_const_iff_tendsto
tendsto_nhds πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”β€”Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
sub_add_cancel
Asymptotics.IsLittleO.add
Asymptotics.IsLittleO.trans
isLittleO
symm
Asymptotics.isEquivalent_const_iff_tendsto
trans
tendsto_nhds_iff πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”tendsto_nhds
symm
trans πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”Asymptotics.IsLittleO.triangle
Asymptotics.IsLittleO.trans_isBigO
isLittleO
isBigO
trans_eventuallyEq πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.EventuallyEq
β€”β€”trans
Filter.EventuallyEq.isEquivalent
trans_isBigO πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
β€”β€”Asymptotics.IsBigO.trans
isBigO
trans_isLittleO πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
β€”β€”Asymptotics.IsBigO.trans_isLittleO
isBigO
trans_isTheta πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Asymptotics.IsTheta
NormedAddCommGroup.toNorm
β€”β€”Asymptotics.IsTheta.trans
isTheta
zpow πŸ“–mathematicalAsymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.instPow
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
β€”zpow_natCast
pow
zpow_negSucc
inv

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
add_isEquivalent πŸ“–mathematicalAsymptotics.IsLittleO
NormedAddCommGroup.toNorm
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Asymptotics.IsEquivalent.add_isLittleO
add_comm
isEquivalent πŸ“–mathematicalAsymptotics.IsLittleO
NormedAddCommGroup.toNorm
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”
trans_isEquivalent πŸ“–β€”Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”trans_isBigO
Asymptotics.IsEquivalent.isBigO

Asymptotics.IsTheta

Theorems

NameKindAssumesProvesValidatesDepends On
trans_isEquivalent πŸ“–β€”Asymptotics.IsTheta
NormedAddCommGroup.toNorm
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”trans
Asymptotics.IsEquivalent.isTheta

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalent πŸ“–mathematicalFilter.EventuallyEqAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Asymptotics.IsEquivalent.congr_right
Asymptotics.isLittleO_refl_left
trans_isEquivalent πŸ“–β€”Filter.EventuallyEq
Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”Asymptotics.IsEquivalent.trans
isEquivalent

---

← Back to Index