Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Analysis/Asymptotics/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremscomp_summable_norm, const_smul_left, const_smul_self, eq_zero_of_norm_pow, eq_zero_of_norm_pow_within, exists_eq_mul, finsetProd, isBoundedUnder_le, listProd, multisetProd, natCast_atTop, nat_of_atTop, of_pow, pow_of_le_right, smul, smul_isLittleO, trans_tendsto, trans_tendsto_nhds, const_smul_left, const_smul_self, exists_eq_mul, right_le_add_of_lt_one, right_le_sub_of_lt_one, smul, const_smul_left, exists_eq_mul, finsetProd, listProd, multisetProd, natCast_atTop, of_tendsto_div_atBot, of_tendsto_div_atTop, right_isBigO_add, right_isBigO_add', right_isBigO_sub, smul, smul_isBigO, tendsto_div_nhds_zero, tendsto_inv_smul_nhds_zero, tendsto_zero_of_tendsto, trans_tendsto, bound_of_isBigO_cofinite, bound_of_isBigO_nat_atTop, continuousAt_iff_isLittleO, div_isBoundedUnder_of_isBigO, isBigOWith_const_one, isBigOWith_iff_exists_eq_mul, isBigOWith_mul_iff_isBigOWith_div, isBigOWith_of_div_tendsto_nhds, isBigOWith_of_eq_mul, isBigOWith_pi, isBigOWith_principal, isBigOWith_top, isBigO_atTop_iff_eventually_exists, isBigO_atTop_iff_eventually_exists_pos, isBigO_cofinite_iff, isBigO_const_iff, isBigO_const_left_iff_pos_le_norm, isBigO_const_of_ne, isBigO_const_of_tendsto, isBigO_const_one, isBigO_const_smul_left, isBigO_const_smul_right, isBigO_iff_div_isBoundedUnder, isBigO_iff_exists_eq_mul, isBigO_iff_isBoundedUnder_le_div, isBigO_mul_iff_isBigO_div, isBigO_nat_atTop_iff, isBigO_nat_atTop_induction, isBigO_nat_atTop_induction_of_eventually_pos, isBigO_of_div_tendsto_nhds, isBigO_of_div_tendsto_nhds_of_ne_zero, isBigO_one_iff, isBigO_one_nat_atTop_iff, isBigO_one_nhds_ne_iff, isBigO_pi, isBigO_principal, isBigO_top, isLittleO_const_const_iff, isLittleO_const_id_atBot, isLittleO_const_id_atTop, isLittleO_const_id_cobounded, isLittleO_const_iff, isLittleO_const_iff_isLittleO_one, isLittleO_const_left, isLittleO_const_left_of_ne, isLittleO_const_smul_left, isLittleO_const_smul_right, isLittleO_id_const, isLittleO_id_one, isLittleO_iff_exists_eq_mul, isLittleO_iff_tendsto, isLittleO_iff_tendsto', isLittleO_mul_iff_isLittleO_div, isLittleO_norm_pow_id, isLittleO_norm_pow_norm_pow, isLittleO_of_tendsto, isLittleO_of_tendsto', isLittleO_one_iff, isLittleO_one_left_iff, isLittleO_pi, isLittleO_pow_id, isLittleO_pow_pow, isLittleO_pow_sub_pow_sub, isLittleO_pow_sub_sub, isLittleO_principal, isLittleO_pure, isLittleO_top, isBigOWith_principal, isBigOWith_rev_principal, isBigO_principal, isBigO_rev_principal, isBigO_const, isBigO_one, isBigO_one, isBigOWith_congr, isBigO_congr, isLittleO_congr, tendsto_zero_smul_of_tendsto_zero_of_bounded, isBigOWith_congr, isBigO_congr, isLittleO_congr, mul_tendsto_const, summable_of_isBigO, summable_of_isBigO_nat
125
Total125

Asymptotics

Theorems

NameKindAssumesProvesValidatesDepends On
bound_of_isBigO_cofinite πŸ“–mathematicalIsBigO
NormedAddCommGroup.toNorm
Filter.cofinite
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Real.instMul
β€”IsBigO.exists_pos
Filter.eventually_cofinite
IsBigOWith_def
Finset.exists_le
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Set.Finite.toFinset.congr_simp
lt_max_iff
max_mul_of_nonneg
IsOrderedRing.toMulPosMono
norm_nonneg
le_max_iff
not_le
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
bound_of_isBigO_nat_atTop πŸ“–mathematicalIsBigO
NormedAddCommGroup.toNorm
Filter.atTop
Nat.instPreorder
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Real.instMul
β€”bound_of_isBigO_cofinite
Nat.cofinite_eq_atTop
continuousAt_iff_isLittleO πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
IsLittleO
NormedRing.toNorm
nhds
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
sub_zero
div_isBoundedUnder_of_isBigO πŸ“–mathematicalIsBigO
NormedDivisionRing.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”IsBigO.exists_nonneg
Filter.eventually_map
Filter.Eventually.mono
IsBigOWith.bound
norm_div
div_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
isBigOWith_const_one πŸ“–mathematicalβ€”IsBigOWith
Norm.norm
β€”NormOneClass.norm_one
mul_one
isBigOWith_iff_exists_eq_mul πŸ“–mathematicalReal
Real.instLE
Real.instZero
IsBigOWith
NormedDivisionRing.toNorm
Filter.Eventually
Norm.norm
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”Filter.Eventually.mono
IsBigOWith.bound
norm_div
div_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
Filter.EventuallyEq.symm
IsBigOWith.eventually_mul_div_cancel
isBigOWith_of_eq_mul
isBigOWith_mul_iff_isBigOWith_div πŸ“–mathematicalFilter.Eventually
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
IsBigOWith
NormedDivisionRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”isBigOWith_iff
Filter.Eventually.congr
Filter.Eventually.mp
Filter.Eventually.of_forall
norm_mul
NormedDivisionRing.toNormMulClass
norm_div
mul_div_assoc
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
isBigOWith_of_div_tendsto_nhds πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
Real
Real.instLT
Real.instZero
Real.instInv
Norm.norm
NormedDivisionRing.toNorm
IsBigOWithβ€”IsBigOWith_def
Filter.Eventually.mono
Filter.Tendsto.eventually_const_le
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.Tendsto.comp
Continuous.tendsto
continuous_norm
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
norm_zero
div_zero
IsOrderedRing.toPosMulMono
norm_div
Mathlib.Tactic.FieldSimp.le_eq_cancel_le
PosMulStrictMono.toPosMulMono
IsStrictOrderedRing.toPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.cons_pos
PosMulReflectLE.toPosMulReflectLT
Real.instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_pos_iff
isBigOWith_of_eq_mul πŸ“–mathematicalFilter.Eventually
Real
Real.instLE
Norm.norm
SeminormedRing.toNorm
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
IsBigOWithβ€”IsBigOWith_def
Filter.EventuallyEq.rw
Filter.EventuallyEq.symm
Filter.Eventually.mono
LE.le.trans
norm_mul_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
isBigOWith_pi πŸ“–mathematicalReal
Real.instLE
Real.instZero
IsBigOWith
SeminormedAddCommGroup.toNorm
Pi.seminormedAddCommGroup
β€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
pi_norm_le_iff_of_nonneg
Finite.of_fintype
isBigOWith_principal πŸ“–mathematicalβ€”IsBigOWith
Filter.principal
Real
Real.instLE
Norm.norm
Real.instMul
β€”IsBigOWith_def
Filter.eventually_principal
isBigOWith_top πŸ“–mathematicalβ€”IsBigOWith
Top.top
Filter
Filter.instTop
Real
Real.instLE
Norm.norm
Real.instMul
β€”IsBigOWith_def
Filter.eventually_top
isBigO_atTop_iff_eventually_exists πŸ“–mathematicalβ€”IsBigO
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Filter.Eventually
Real
β€”isBigO_iff
Filter.exists_eventually_atTop
SemilatticeSup.instIsDirectedOrder
isBigO_atTop_iff_eventually_exists_pos πŸ“–mathematicalβ€”IsBigO
SeminormedAddCommGroup.toNorm
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Filter.Eventually
Real
Real.instLT
Real.instZero
β€”SemilatticeSup.instIsDirectedOrder
isBigO_cofinite_iff πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
IsBigO
NormedAddCommGroup.toNorm
Filter.cofinite
Real
Real.instLE
Norm.norm
Real.instMul
β€”bound_of_isBigO_cofinite
norm_zero
MulZeroClass.mul_zero
IsBigO.mono
isBigO_top
le_top
isBigO_const_iff πŸ“–mathematicalβ€”IsBigO
NormedAddCommGroup.toNorm
Filter.EventuallyEq
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
β€”isBigO_zero_right_iff
IsBigO.isBoundedUnder_le
eq_or_ne
Filter.EventuallyEq.trans_isBigO
isBigO_zero
Filter.IsBoundedUnder.isBigO_const
isBigO_const_left_iff_pos_le_norm πŸ“–mathematicalβ€”IsBigO
NormedAddCommGroup.toNorm
SeminormedAddCommGroup.toNorm
Real
Real.instLT
Real.instZero
Filter.Eventually
Real.instLE
Norm.norm
β€”IsBigO.exists_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
Filter.Eventually.mono
IsBigOWith.bound
div_le_iffβ‚€'
IsBigO.of_bound
div_mul_eq_mul_div
mul_div_assoc
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
one_le_div
isBigO_const_of_ne πŸ“–mathematicalβ€”IsBigO
NormedAddCommGroup.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
β€”IsBigO.isBoundedUnder_le
Filter.IsBoundedUnder.isBigO_const
isBigO_const_of_tendsto πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsBigO
NormedAddCommGroup.toNorm
β€”Filter.IsBoundedUnder.isBigO_const
Filter.Tendsto.isBoundedUnder_le
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.Tendsto.norm
isBigO_const_one πŸ“–mathematicalβ€”IsBigOβ€”IsBigOWith.isBigO
isBigOWith_const_one
isBigO_const_smul_left πŸ“–mathematicalβ€”IsBigO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”norm_ne_zero_iff
isBigO_norm_left
norm_smul
isBigO_const_mul_left_iff
NormedDivisionRing.toNormMulClass
isBigO_const_smul_right πŸ“–mathematicalβ€”IsBigO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”norm_ne_zero_iff
isBigO_norm_right
norm_smul
isBigO_const_mul_right_iff
NormedDivisionRing.toNormMulClass
isBigO_iff_div_isBoundedUnder πŸ“–mathematicalFilter.EventuallyIsBigO
NormedDivisionRing.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”div_isBoundedUnder_of_isBigO
IsBigO.of_bound
Filter.Eventually.mp
norm_div
Filter.Eventually.mono
norm_zero
MulZeroClass.mul_zero
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
isBigO_iff_exists_eq_mul πŸ“–mathematicalβ€”IsBigO
NormedDivisionRing.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”IsBigO.exists_nonneg
IsBigOWith.exists_eq_mul
isBigO_iff_isBigOWith
isBigOWith_of_eq_mul
isBigO_iff_isBoundedUnder_le_div πŸ“–mathematicalFilter.Eventually
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
IsBigO
NormedAddCommGroup.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
β€”Filter.eventually_congr
Filter.Eventually.mono
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
isBigO_mul_iff_isBigO_div πŸ“–mathematicalFilter.Eventually
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
IsBigO
NormedDivisionRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”isBigO_iff_isBigOWith
isBigOWith_mul_iff_isBigOWith_div
isBigO_nat_atTop_iff πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
IsBigO
NormedAddCommGroup.toNorm
Filter.atTop
Nat.instPreorder
Real
Real.instLE
Norm.norm
Real.instMul
β€”Nat.cofinite_eq_atTop
isBigO_cofinite_iff
isBigO_nat_atTop_induction πŸ“–mathematicalFilter.Eventually
Filter.atTop
Nat.instPreorder
Real
IsBigO
NormedAddCommGroup.toNorm
β€”Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Eventually.and
Filter.eventually_forall_ge_atTop
isBigO_iff
Filter.eventually_ge_atTop
Finset.nonempty_Icc
Set.mem_setOf
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Finset.le_sup'
Finset.mem_def
norm_nonneg
Filter.mp_mem
Filter.univ_mem'
le_imp_le_of_le_of_le
le_refl
isBigO_nat_atTop_induction_of_eventually_pos πŸ“–mathematicalFilter.Eventually
Real
Real.instLE
Real.instZero
Filter.atTop
Nat.instPreorder
Real.instLT
IsBigO
Real.norm
β€”isBigO_nat_atTop_induction
Filter.mp_mem
Filter.univ_mem'
Filter.eventually_forall_ge_atTop
Filter.eventually_ge_atTop
isBigO_of_div_tendsto_nhds πŸ“–mathematicalFilter.Eventually
Filter.Tendsto
Pi.instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
IsBigO
NormedDivisionRing.toNorm
β€”isBigO_iff_div_isBoundedUnder
Filter.Tendsto.isBoundedUnder_le
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.Tendsto.norm
isBigO_of_div_tendsto_nhds_of_ne_zero πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
IsBigO
NormedDivisionRing.toNorm
β€”add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.cons_pos
Real.instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsBigO_def
isBigOWith_of_div_tendsto_nhds
isBigO_one_iff πŸ“–mathematicalβ€”IsBigO
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
β€”NormOneClass.norm_one
mul_one
isBigO_one_nat_atTop_iff πŸ“–mathematicalβ€”IsBigO
Real
NormedAddCommGroup.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instOne
Real.instLE
Norm.norm
β€”isBigO_nat_atTop_iff
one_ne_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
mul_one
isBigO_one_nhds_ne_iff πŸ“–mathematicalβ€”IsBigO
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
β€”Filter.mp_mem
eventually_nhdsWithin_iff
Filter.univ_mem'
eq_or_ne
le_max_right
LE.le.trans
le_max_left
IsBigO.mono
nhdsWithin_le_nhds
isBigO_pi πŸ“–mathematicalβ€”IsBigO
SeminormedAddCommGroup.toNorm
Pi.seminormedAddCommGroup
β€”Finite.of_fintype
Filter.eventually_congr
Filter.eventually_atTop
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
isBigOWith_pi
isBigO_principal πŸ“–mathematicalβ€”IsBigO
Filter.principal
Real
Real.instLE
Norm.norm
Real.instMul
β€”β€”
isBigO_top πŸ“–mathematicalβ€”IsBigO
Top.top
Filter
Filter.instTop
Real
Real.instLE
Norm.norm
Real.instMul
β€”β€”
isLittleO_const_const_iff πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”not_tendsto_atTop_of_tendsto_nhds
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
tendsto_const_nhds
isLittleO_const_id_atBot πŸ“–mathematicalβ€”IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
Filter.atBot
Real.instPreorder
β€”isLittleO_const_left
Filter.tendsto_abs_atBot_atTop
Real.instIsOrderedAddMonoid
isLittleO_const_id_atTop πŸ“–mathematicalβ€”IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
Filter.atTop
Real.instPreorder
β€”isLittleO_const_left
Filter.tendsto_abs_atTop_atTop
isLittleO_const_id_cobounded πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”isLittleO_const_left
tendsto_norm_cobounded_atTop
isLittleO_const_iff πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”isLittleO_const_iff_isLittleO_one
NormedDivisionRing.to_normOneClass
isLittleO_one_iff
isLittleO_const_iff_isLittleO_one πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
β€”IsLittleO.trans_isBigOWith
isBigOWith_const_one
norm_pos_iff
IsLittleO.trans_isBigO
isBigO_const_const
isLittleO_const_left πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Filter.Tendsto
Real
Norm.norm
Filter.atTop
Real.instPreorder
β€”eq_or_ne
isLittleO_const_left_of_ne
isLittleO_const_left_of_ne πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
Filter.Tendsto
Real
Norm.norm
Filter.atTop
Real.instPreorder
β€”isLittleO_one_left_iff
NormedDivisionRing.to_normOneClass
IsBigO.trans_isLittleO
isBigO_const_const
isBigO_const_one
isLittleO_const_smul_left πŸ“–mathematicalβ€”IsLittleO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”norm_ne_zero_iff
isLittleO_norm_left
norm_smul
isLittleO_const_mul_left_iff
NormedDivisionRing.toNormMulClass
isLittleO_const_smul_right πŸ“–mathematicalβ€”IsLittleO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”norm_ne_zero_iff
isLittleO_norm_right
norm_smul
isLittleO_const_mul_right_iff
NormedDivisionRing.toNormMulClass
isLittleO_id_const πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”isLittleO_const_iff
Continuous.tendsto
continuous_id
isLittleO_id_one πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Pi.instOne
β€”isLittleO_id_const
one_ne_zero
isLittleO_iff_exists_eq_mul πŸ“–mathematicalβ€”IsLittleO
NormedDivisionRing.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”IsLittleO.tendsto_div_nhds_zero
Filter.EventuallyEq.symm
IsLittleO.eventually_mul_div_cancel
IsLittleO_def
isBigOWith_of_eq_mul
Filter.Eventually.mono
NormedAddCommGroup.tendsto_nhds_zero
le_of_lt
isLittleO_iff_tendsto πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
IsLittleO
NormedDivisionRing.toNorm
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
β€”isLittleO_iff_tendsto'
Filter.Eventually.of_forall
isLittleO_iff_tendsto' πŸ“–mathematicalFilter.EventuallyIsLittleO
NormedDivisionRing.toNorm
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
β€”IsLittleO.tendsto_div_nhds_zero
IsLittleO.congr'
IsLittleO.mul_isBigO
NormedDivisionRing.toNormMulClass
isLittleO_one_iff
NormedDivisionRing.to_normOneClass
isBigO_refl
Filter.Eventually.mono
div_mul_cancel_of_imp
Filter.Eventually.of_forall
one_mul
isLittleO_mul_iff_isLittleO_div πŸ“–mathematicalFilter.Eventually
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
IsLittleO
NormedDivisionRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”isLittleO_iff_forall_isBigOWith
isBigOWith_mul_iff_isBigOWith_div
isLittleO_norm_pow_id πŸ“–mathematicalβ€”IsLittleO
Real
Real.norm
SeminormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
β€”isLittleO_norm_pow_norm_pow
isLittleO_norm_right
pow_one
isLittleO_norm_pow_norm_pow πŸ“–mathematicalβ€”IsLittleO
Real
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
SeminormedAddCommGroup.toNorm
β€”IsLittleO.comp_tendsto
isLittleO_pow_pow
tendsto_norm_zero
isLittleO_of_tendsto πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
IsLittleO
NormedDivisionRing.toNorm
β€”isLittleO_iff_tendsto
isLittleO_of_tendsto' πŸ“–mathematicalFilter.Eventually
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
IsLittleO
NormedDivisionRing.toNorm
β€”isLittleO_iff_tendsto'
isLittleO_one_iff πŸ“–mathematicalβ€”IsLittleO
SeminormedAddGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
β€”NormOneClass.norm_one
mul_one
Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_closedBall
dist_zero_right
isLittleO_one_left_iff πŸ“–mathematicalβ€”IsLittleO
Filter.Tendsto
Real
Norm.norm
Filter.atTop
Real.instPreorder
β€”isLittleO_iff_nat_mul_le_aux
NormOneClass.norm_one
Real.instZeroLEOneClass
mul_one
Filter.HasBasis.tendsto_right_iff
Filter.HasCountableBasis.toHasBasis
atTop_hasCountableBasis_of_archimedean
Real.instIsOrderedRing
Real.instArchimedean
isLittleO_pi πŸ“–mathematicalβ€”IsLittleO
SeminormedAddCommGroup.toNorm
Pi.seminormedAddCommGroup
β€”IsLittleO_def
isLittleO_pow_id πŸ“–mathematicalβ€”IsLittleO
NormedDivisionRing.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”pow_one
isLittleO_pow_pow
isLittleO_pow_pow πŸ“–mathematicalβ€”IsLittleO
NormedDivisionRing.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”lt_iff_exists_add
Nat.instCanonicallyOrderedAdd
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
isBigO_refl
IsLittleO.pow
isLittleO_one_iff
NormedDivisionRing.to_normOneClass
Filter.tendsto_id
pow_add
one_pow
mul_one
isLittleO_pow_sub_pow_sub πŸ“–mathematicalβ€”IsLittleO
Real
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Monoid.toNatPow
Real.instMonoid
Norm.norm
SeminormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”IsLittleO.comp_tendsto
isLittleO_pow_pow
tendsto_norm_sub_self
isLittleO_pow_sub_sub πŸ“–mathematicalβ€”IsLittleO
Real
Real.norm
SeminormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Monoid.toNatPow
Real.instMonoid
Norm.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”pow_one
isLittleO_pow_sub_pow_sub
isLittleO_principal πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
SeminormedAddCommGroup.toNorm
Filter.principal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”norm_le_zero_iff
Filter.Tendsto.mono_left
Continuous.tendsto'
Continuous.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id
continuous_const
MulZeroClass.zero_mul
inf_le_left
le_of_tendsto_of_tendsto
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
nhdsGT_neBot
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
tendsto_const_nhds
eventually_nhdsWithin_iff
Filter.Eventually.of_forall
Filter.eventually_principal
IsLittleO.congr'
isLittleO_zero
Filter.EventuallyEq.rfl
isLittleO_pure πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
Filter
Filter.instPure
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”isLittleO_congr
isLittleO_const_const_iff
Filter.pure_neBot
isLittleO_top πŸ“–mathematicalβ€”IsLittleO
NormedAddCommGroup.toNorm
SeminormedAddCommGroup.toNorm
Top.top
Filter
Filter.instTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
comp_summable_norm πŸ“–β€”Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Summable
Real
Real.instAddCommMonoid
Real.pseudoMetricSpace
Norm.norm
SummationFilter.unconditional
β€”β€”summable_of_isBigO
Real.instCompleteSpace
comp_tendsto
norm_norm
tendsto_zero_iff_norm_tendsto_zero
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
const_smul_left πŸ“–mathematicalAsymptotics.IsBigO
SeminormedAddCommGroup.toNorm
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”isBigOWith
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.const_smul_left
const_smul_self πŸ“–mathematicalβ€”Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.const_smul_self
eq_zero_of_norm_pow πŸ“–mathematicalAsymptotics.IsBigO
Real
NormedAddCommGroup.toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”eq_zero_of_norm_pow_within
nhdsWithin_univ
Set.mem_univ
eq_zero_of_norm_pow_within πŸ“–mathematicalAsymptotics.IsBigO
Real
NormedAddCommGroup.toNorm
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Set
Set.instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”mem_of_mem_nhdsWithin
eq_zero_imp
sub_self
norm_zero
zero_pow
exists_eq_mul πŸ“–mathematicalAsymptotics.IsBigO
NormedDivisionRing.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”Asymptotics.isBigO_iff_exists_eq_mul
finsetProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
SeminormedCommRing.toSeminormedRing
NormedField.toNorm
Finset.prod
CommRing.toCommMonoid
SeminormedCommRing.toCommRing
Field.toCommRing
NormedField.toField
β€”multisetProd
isBoundedUnder_le πŸ“–mathematicalAsymptotics.IsBigOFilter.IsBoundedUnder
Real
Real.instLE
Norm.norm
β€”bound
Filter.eventually_map
listProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”NormedDivisionRing.to_normOneClass
instReflLe
mul
NormedDivisionRing.toNormMulClass
multisetProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
SeminormedCommRing.toSeminormedRing
NormedField.toNorm
Multiset.prod
CommRing.toCommMonoid
SeminormedCommRing.toCommRing
Multiset.map
Field.toCommRing
NormedField.toField
β€”Quotient.mk_surjective
listProd
natCast_atTop πŸ“–mathematicalAsymptotics.IsBigO
Filter.atTop
PartialOrder.toPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”comp_tendsto
tendsto_natCast_atTop_atTop
IsStrictOrderedRing.toIsOrderedRing
nat_of_atTop πŸ“–β€”Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Filter.atTop
Nat.instPreorder
Filter.Eventually
β€”β€”Asymptotics.bound_of_isBigO_nat_atTop
Asymptotics.isBigO_iff
Filter.mp_mem
Filter.univ_mem'
norm_zero
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
of_pow πŸ“–β€”Asymptotics.IsBigO
NormedDivisionRing.toNorm
SeminormedRing.toNorm
Pi.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Ring.toSemiring
SeminormedRing.toRing
β€”β€”exists_pos
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Filter.Eventually.and
Filter.eventually_ge_atTop
Filter.Tendsto.eventually_ge_atTop
Filter.tendsto_pow_atTop
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.of_pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
pow_of_le_right πŸ“–mathematicalFilter.EventuallyLE
Real
Real.instLE
Pi.instOne
Real.instOne
Asymptotics.IsBigO
Real.norm
Pi.instPow
Monoid.toNatPow
Real.instMonoid
β€”Asymptotics.IsBigO_def
Asymptotics.IsBigOWith_def
Filter.Eventually.mono
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
abs_eq_self
Real.instIsOrderedAddMonoid
LE.le.trans
zero_le_one
Real.instZeroLEOneClass
one_mul
pow_le_pow_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
smul πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”isBigOWith
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.smul
smul_isLittleO πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
Asymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”Asymptotics.IsLittleO_def
exists_pos
Asymptotics.IsBigOWith.congr_const
Asymptotics.IsBigOWith.smul
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_div_cancelβ‚€
ne_of_gt
trans_tendsto πŸ“–β€”Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
trans_isLittleO
trans_tendsto_nhds πŸ“–β€”Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”β€”trans
Filter.Tendsto.isBigO_one

Asymptotics.IsBigOWith

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul_left πŸ“–mathematicalAsymptotics.IsBigOWith
SeminormedAddCommGroup.toNorm
Real
Real.instMul
Norm.norm
SeminormedRing.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”trans
const_smul_self
norm_nonneg
const_smul_self πŸ“–mathematicalβ€”Asymptotics.IsBigOWith
SeminormedAddCommGroup.toNorm
Norm.norm
SeminormedRing.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Asymptotics.isBigOWith_of_le'
norm_smul_le
exists_eq_mul πŸ“–mathematicalAsymptotics.IsBigOWith
NormedDivisionRing.toNorm
Real
Real.instLE
Real.instZero
Filter.Eventually
Norm.norm
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”Asymptotics.isBigOWith_iff_exists_eq_mul
right_le_add_of_lt_one πŸ“–mathematicalAsymptotics.IsBigOWith
SeminormedAddCommGroup.toNorm
Real
Real.instLT
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”congr
of_neg_left
neg_right
right_le_sub_of_lt_one
neg_sub
sub_neg_eq_add
right_le_sub_of_lt_one πŸ“–mathematicalAsymptotics.IsBigOWith
SeminormedAddCommGroup.toNorm
Real
Real.instLT
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”of_bound
Filter.mem_of_superset
bound
mul_comm
one_div
div_eq_mul_inv
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_sub
mul_one
le_trans
sub_le_sub_left
norm_sub_norm_le
smul πŸ“–mathematicalAsymptotics.IsBigOWith
SeminormedRing.toNorm
NormedDivisionRing.toNorm
SeminormedAddCommGroup.toNorm
Real
Real.instMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”Asymptotics.IsBigOWith_def
Filter.mp_mem
Filter.univ_mem'
le_trans
norm_smul_le
norm_smul
mul_mul_mul_comm
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
norm_nonneg

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul_left πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Asymptotics.IsBigO.trans_isLittleO
Asymptotics.IsBigO.const_smul_self
exists_eq_mul πŸ“–mathematicalAsymptotics.IsLittleO
NormedDivisionRing.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Filter.EventuallyEq
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Asymptotics.isLittleO_iff_exists_eq_mul
finsetProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
SeminormedCommRing.toSeminormedRing
NormedField.toNorm
Finset
Finset.instMembership
Asymptotics.IsLittleO
Finset.prod
CommRing.toCommMonoid
SeminormedCommRing.toCommRing
Field.toCommRing
NormedField.toField
β€”multisetProd
listProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
Asymptotics.IsLittleO
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedDivisionRing.toNormedRing
β€”mul_isBigO
NormedDivisionRing.toNormMulClass
Asymptotics.IsBigO.listProd
Asymptotics.IsBigO.mul_isLittleO
multisetProd πŸ“–mathematicalAsymptotics.IsBigO
SeminormedRing.toNorm
SeminormedCommRing.toSeminormedRing
NormedField.toNorm
Multiset
Multiset.instMembership
Asymptotics.IsLittleO
Multiset.prod
CommRing.toCommMonoid
SeminormedCommRing.toCommRing
Multiset.map
Field.toCommRing
NormedField.toField
β€”Quotient.mk_surjective
listProd
natCast_atTop πŸ“–mathematicalAsymptotics.IsLittleO
Filter.atTop
PartialOrder.toPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”comp_tendsto
tendsto_natCast_atTop_atTop
IsStrictOrderedRing.toIsOrderedRing
of_tendsto_div_atBot πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Asymptotics.IsLittleO
NormedField.toNorm
β€”of_neg_left
of_tendsto_div_atTop
Filter.tendsto_neg_atBot_iff
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_neg_eq_neg_div
neg_neg
of_tendsto_div_atTop πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Asymptotics.IsLittleO
NormedField.toNorm
β€”Asymptotics.isLittleO_of_tendsto'
Filter.Eventually.mono
Filter.Tendsto.eventually_ge_atTop
zero_div
inv_div
Filter.Tendsto.comp
tendsto_inv_atTop_zero
right_isBigO_add πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigO
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Asymptotics.IsBigOWith.isBigO
Nat.instAtLeastTwoHAddOfNat
Asymptotics.IsBigOWith.right_le_add_of_lt_one
def'
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
one_half_lt_one
right_isBigO_add' πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigO
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”right_isBigO_add
add_comm
right_isBigO_sub πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigO
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”Asymptotics.IsBigOWith.isBigO
Nat.instAtLeastTwoHAddOfNat
Asymptotics.IsBigOWith.right_le_sub_of_lt_one
def'
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
one_half_lt_one
smul πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”smul_isBigO
isBigO
smul_isBigO πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedRing.toNorm
NormedDivisionRing.toNorm
Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”Asymptotics.IsLittleO_def
Asymptotics.IsBigO.exists_pos
Asymptotics.IsBigOWith.congr_const
Asymptotics.IsBigOWith.smul
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_mul_cancelβ‚€
ne_of_gt
tendsto_div_nhds_zero πŸ“–mathematicalAsymptotics.IsLittleO
NormedDivisionRing.toNorm
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
β€”Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
div_eq_mul_inv
mul_isBigO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
Asymptotics.isBigO_of_le
norm_div
NormOneClass.norm_one
Real.instZeroLEOneClass
tendsto_inv_smul_nhds_zero πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
NormedDivisionRing.toNorm
Filter.Tendsto
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”div_eq_inv_mul
tendsto_div_nhds_zero
norm_norm
tendsto_zero_of_tendsto πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
NormedDivisionRing.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”trans_isBigO
Filter.Tendsto.isBigO_one
NormedDivisionRing.to_normOneClass
Asymptotics.isLittleO_one_iff
trans_tendsto πŸ“–β€”Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”Asymptotics.IsBigO.trans_tendsto
isBigO

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
isBigOWith_principal πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
IsCompact
Asymptotics.IsBigOWith
SeminormedAddGroup.toNorm
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
SupSet.sSup
Real.instSupSet
Set.image
Norm.norm
Filter.principal
β€”Asymptotics.isBigOWith_principal
div_mul_cancelβ‚€
IsCompact.isLUB_sSup
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
IsCompact.image
IsCompact.image_of_continuousOn
continuous_norm
Set.image_nonempty
Set.mem_image_of_mem
isBigOWith_rev_principal πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
IsCompact
Asymptotics.IsBigOWith
SeminormedAddGroup.toNorm
NormedAddGroup.toNorm
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
InfSet.sInf
Real.instInfSet
Set.image
Filter.principal
β€”Asymptotics.isBigOWith_principal
mul_comm_div
IsCompact.image
IsCompact.image_of_continuousOn
continuous_norm
IsCompact.isGLB_sInf
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Set.image_nonempty
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
one_le_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsCompact.sInf_mem
IsGLB.nonempty
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instNontrivial
Ne.lt_of_le
norm_ne_zero_iff
Set.mem_image_of_mem
isBigO_principal πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
IsCompact
Asymptotics.IsBigO
SeminormedAddGroup.toNorm
Filter.principal
β€”Asymptotics.IsBigOWith.isBigO
isBigOWith_principal
isBigO_rev_principal πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
IsCompact
Asymptotics.IsBigO
SeminormedAddGroup.toNorm
NormedAddGroup.toNorm
Filter.principal
β€”Asymptotics.IsBigOWith.isBigO
isBigOWith_rev_principal

Filter.IsBoundedUnder

Theorems

NameKindAssumesProvesValidatesDepends On
isBigO_const πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
Norm.norm
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
β€”Asymptotics.IsBigO.trans
isBigO_one
NormedDivisionRing.to_normOneClass
Asymptotics.isBigO_const_const
isBigO_one πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
Norm.norm
Asymptotics.IsBigOβ€”Asymptotics.isBigO_one_iff

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
isBigO_one πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
β€”Filter.IsBoundedUnder.isBigO_one
isBoundedUnder_le
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
norm

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isBigOWith_congr πŸ“–mathematicalβ€”Asymptotics.IsBigOWith
nhds
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”OpenPartialHomeomorph.isBigOWith_congr
isBigO_congr πŸ“–mathematicalβ€”Asymptotics.IsBigO
nhds
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”Asymptotics.IsBigO_def
isBigOWith_congr
isLittleO_congr πŸ“–mathematicalβ€”Asymptotics.IsLittleO
nhds
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”Asymptotics.IsLittleO_def
isBigOWith_congr

NormedField

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_zero_smul_of_tendsto_zero_of_bounded πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
mul_one
Asymptotics.IsLittleO.smul_isBigO
NormMulClass.toNormSMulClass
NormedDivisionRing.toNormMulClass
Filter.IsBoundedUnder.isBigO_const
one_ne_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing

OpenPartialHomeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isBigOWith_congr πŸ“–mathematicalSet
Set.instMembership
PartialEquiv.target
toPartialEquiv
Asymptotics.IsBigOWith
nhds
toFun'
symm
β€”Asymptotics.IsBigOWith.comp_tendsto
continuousAt
map_target
rightInvOn
ContinuousAt.eq_1
Asymptotics.IsBigOWith.congr'
continuousAt_symm
Filter.Eventually.mono
eventually_right_inverse
isBigO_congr πŸ“–mathematicalSet
Set.instMembership
PartialEquiv.target
toPartialEquiv
Asymptotics.IsBigO
nhds
toFun'
symm
β€”Asymptotics.IsBigO_def
isBigOWith_congr
isLittleO_congr πŸ“–mathematicalSet
Set.instMembership
PartialEquiv.target
toPartialEquiv
Asymptotics.IsLittleO
nhds
toFun'
symm
β€”Asymptotics.IsLittleO_def
isBigOWith_congr

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
mul_tendsto_const πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
SummationFilter.unconditional
Filter.Tendsto
Filter.cofinite
nhds
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
β€”summable_of_isBigO
one_mul
mul_one
Asymptotics.IsBigO.mul
Asymptotics.isBigO_const_mul_self
Filter.Tendsto.isBigO_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
summable_of_isBigO πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
Real.norm
Filter.cofinite
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
β€”Asymptotics.IsBigO.isBigOWith
Summable.of_norm_bounded_eventually
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Summable.abs
Real.instIsOrderedAddMonoid
instIsUniformAddGroupReal
Real.instCompleteSpace
Asymptotics.IsBigOWith.bound
summable_of_isBigO_nat πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
β€”summable_of_isBigO
Nat.cofinite_eq_atTop

---

← Back to Index