Documentation Verification Report

SpecificAsymptotics

πŸ“ Source: Mathlib/Analysis/Asymptotics/SpecificAsymptotics.lean

Statistics

MetricCount
Definitions0
Theoremstrans_tendsto_norm_atTop, rpow, sum_range, isEquivalent_nat_ceil, isEquivalent_nat_floor, isLittleO_pow_pow_atTop_of_lt, isLittleO_sum_range_of_tendsto_zero, isLittleO_sub_self_inv, cesaro, cesaro_smul, pow_div_pow_eventuallyEq_atBot, pow_div_pow_eventuallyEq_atTop, tendsto_pow_div_pow_atTop_atTop, tendsto_pow_div_pow_atTop_zero
14
Total14

Asymptotics

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalent_nat_ceil πŸ“–mathematicalβ€”IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
Nat.ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
FloorRing.toFloorSemiring
β€”isEquivalent_of_tendsto_one
tendsto_nat_ceil_div_atTop
isEquivalent_nat_floor πŸ“–mathematicalβ€”IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
Nat.floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
FloorRing.toFloorSemiring
β€”isEquivalent_of_tendsto_one
tendsto_nat_floor_div_atTop
isLittleO_pow_pow_atTop_of_lt πŸ“–mathematicalβ€”IsLittleO
NormedField.toNorm
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
β€”isLittleO_iff_tendsto'
Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LT.lt.ne'
tendsto_pow_div_pow_atTop_zero
isLittleO_sum_range_of_tendsto_zero πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
Real.instNatCast
β€”IsLittleO.sum_range
isLittleO_one_iff
NormedDivisionRing.to_normOneClass
zero_le_one
Real.instZeroLEOneClass
Finset.sum_const
Finset.card_range
Nat.smul_one_eq_cast
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
trans_tendsto_norm_atTop πŸ“–β€”Asymptotics.IsBigO
NormedField.toNorm
Filter.Tendsto
Real
Norm.norm
Filter.atTop
Real.instPreorder
β€”β€”exists_pos
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
LT.lt.ne
Filter.Tendsto.atTop_div_const
Real.instIsStrictOrderedRing
Filter.tendsto_atTop_mono'
Asymptotics.IsBigOWith_def

Asymptotics.IsEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
rpow πŸ“–mathematicalPi.hasLe
Real
Real.instLE
Pi.instZero
Real.instZero
Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Pi.instPow
Real.instPow
β€”exists_eq_mul
Asymptotics.isEquivalent_iff_exists_eq_mul
Real.one_rpow
Filter.Tendsto.comp
Real.continuousAt_rpow_const
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_zero
Filter.mp_mem
Filter.Tendsto.eventually_const_lt
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
Filter.univ_mem'
Real.mul_rpow
le_of_lt

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
sum_range πŸ“–mathematicalAsymptotics.IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
Filter.Tendsto
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instPreorder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Real.norm_of_nonneg
Real.norm_eq_abs
Finset.abs_sum_of_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Asymptotics.isLittleO_iff
Nat.instAtLeastTwoHAddOfNat
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Asymptotics.isLittleO_const_left
Filter.Tendsto.congr
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'
Finset.sum_range_add_sum_Ico
norm_add_le
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
norm_sum_le_of_le
Finset.mem_Ico
add_le_add_right
Finset.sum_le_sum_of_subset_of_nonneg
Finset.range_eq_Ico
Finset.Ico_subset_Ico
zero_le
Nat.instCanonicallyOrderedAdd
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
Finset.mul_sum
add_le_add_left
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add

Filter.IsBoundedUnder

Theorems

NameKindAssumesProvesValidatesDepends On
isLittleO_sub_self_inv πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Norm.norm
Asymptotics.IsLittleO
NormedField.toNorm
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
β€”Asymptotics.IsBigO.trans_isLittleO
isBigO_const
one_ne_zero'
NeZero.charZero_one
RCLike.charZero_rclike
Asymptotics.isLittleO_const_left
norm_inv
Filter.Tendsto.inv_tendsto_nhdsGT_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_norm_sub_self_nhdsNE

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
cesaro πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instInv
Real.instNatCast
Finset.sum
Real.instAddCommMonoid
Finset.range
β€”cesaro_smul
cesaro_smul πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instNatCast
Finset.sum
Finset.range
β€”tendsto_sub_nhds_zero_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
Asymptotics.isLittleO_sum_range_of_tendsto_zero
Asymptotics.IsLittleO.congr'
Asymptotics.IsBigO.smul_isLittleO
NormedSpace.toIsBoundedSMul
NormedSpace.toNormSMulClass
Asymptotics.isBigO_refl
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Finset.sum_sub_distrib
Finset.sum_const
Finset.card_range
smul_sub
Nat.cast_smul_eq_nsmul
smul_smul
inv_mul_cancelβ‚€
LT.lt.ne'
one_smul
smul_eq_mul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
pow_div_pow_eventuallyEq_atBot πŸ“–mathematicalβ€”Filter.EventuallyEq
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toZPow
β€”Filter.Eventually.mono
Filter.eventually_lt_atBot
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
zpow_subβ‚€
LT.lt.ne
zpow_natCast
pow_div_pow_eventuallyEq_atTop πŸ“–mathematicalβ€”Filter.EventuallyEq
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toZPow
β€”Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
zpow_subβ‚€
LT.lt.ne'
zpow_natCast
tendsto_pow_div_pow_atTop_atTop πŸ“–mathematicalβ€”Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Filter.tendsto_congr'
pow_div_pow_eventuallyEq_atTop
Filter.tendsto_zpow_atTop_atTop
tendsto_pow_div_pow_atTop_zero πŸ“–mathematicalβ€”Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”Filter.tendsto_congr'
pow_div_pow_eventuallyEq_atTop
tendsto_zpow_atTop_zero

---

← Back to Index