Documentation Verification Report

Theta

πŸ“ Source: Mathlib/Analysis/Asymptotics/Theta.lean

Statistics

MetricCount
DefinitionsinstTransForallEventuallyEqIsTheta, instTransForallIsBigOIsTheta, instTransForallIsLittleOIsTheta, instTransForallIsTheta, instTransForallIsThetaEventuallyEq, instTransForallIsThetaIsBigO, instTransForallIsThetaIsLittleO
7
Theoremstrans_isTheta, add_isTheta, right_isTheta_add, right_isTheta_add', trans_isTheta, add_isLittleO, comp_fst, comp_snd, const_mul_left, const_mul_right, const_smul_left, const_smul_right, div, eq_zero_iff, fiberwise_left, fiberwise_right, finsetProd, inv, isBigO_congr_left, isBigO_congr_right, isBoundedUnder_le_iff, isLittleO_congr_left, isLittleO_congr_right, isTheta_congr_left, isTheta_congr_right, listProd, mono, mul, multisetProd, norm_left, norm_right, of_const_mul_left, of_const_mul_right, of_const_smul_left, of_const_smul_right, of_norm_eventuallyEq, of_norm_eventuallyEq_norm, of_norm_left, of_norm_right, pow, smul, sup, tendsto_norm_atTop_iff, tendsto_zero_iff, trans, trans_eventuallyEq, trans_isBigO, trans_isLittleO, zpow, isTheta_bot, isTheta_comm, isTheta_const_const, isTheta_const_const_iff, isTheta_const_mul_left, isTheta_const_mul_right, isTheta_const_smul_left, isTheta_const_smul_right, isTheta_inv, isTheta_norm_left, isTheta_norm_right, isTheta_of_div_tendsto_nhds_ne_zero, isTheta_refl, isTheta_rfl, isTheta_sup, isTheta_zero_left, isTheta_zero_right, isTheta_principal, isTheta, trans_isTheta
69
Total76

Asymptotics

Definitions

NameCategoryTheorems
instTransForallEventuallyEqIsTheta πŸ“–CompOpβ€”
instTransForallIsBigOIsTheta πŸ“–CompOpβ€”
instTransForallIsLittleOIsTheta πŸ“–CompOpβ€”
instTransForallIsTheta πŸ“–CompOpβ€”
instTransForallIsThetaEventuallyEq πŸ“–CompOpβ€”
instTransForallIsThetaIsBigO πŸ“–CompOpβ€”
instTransForallIsThetaIsLittleO πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isTheta_bot πŸ“–mathematicalβ€”IsTheta
Bot.bot
Filter
Filter.instBot
β€”β€”
isTheta_comm πŸ“–mathematicalβ€”IsThetaβ€”IsTheta.symm
isTheta_const_const πŸ“–mathematicalβ€”IsTheta
NormedAddCommGroup.toNorm
β€”isBigO_const_const
isTheta_const_const_iff πŸ“–mathematicalβ€”IsTheta
NormedAddCommGroup.toNorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”
isTheta_const_mul_left πŸ“–mathematicalβ€”IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”isTheta_const_smul_left
isTheta_const_mul_right πŸ“–mathematicalβ€”IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”isTheta_const_smul_right
isTheta_const_smul_left πŸ“–mathematicalβ€”IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”isBigO_const_smul_left
NormedSpace.toNormSMulClass
isBigO_const_smul_right
isTheta_const_smul_right πŸ“–mathematicalβ€”IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”isBigO_const_smul_right
NormedSpace.toNormSMulClass
isBigO_const_smul_left
isTheta_inv πŸ“–mathematicalβ€”IsTheta
NormedField.toNorm
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
β€”inv_inv
IsTheta.inv
isTheta_norm_left πŸ“–mathematicalβ€”IsTheta
Real
Real.norm
Norm.norm
SeminormedAddCommGroup.toNorm
β€”β€”
isTheta_norm_right πŸ“–mathematicalβ€”IsTheta
Real
Real.norm
Norm.norm
SeminormedAddCommGroup.toNorm
β€”β€”
isTheta_of_div_tendsto_nhds_ne_zero πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTheta
NormedField.toNorm
β€”isBigO_of_div_tendsto_nhds_of_ne_zero
inv_div
Filter.Tendsto.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
inv_ne_zero
isTheta_refl πŸ“–mathematicalβ€”IsThetaβ€”isBigO_refl
isTheta_rfl πŸ“–mathematicalβ€”IsThetaβ€”isTheta_refl
isTheta_sup πŸ“–mathematicalβ€”IsTheta
SeminormedAddCommGroup.toNorm
Filter
Filter.instSup
β€”IsTheta.mono
le_sup_left
le_sup_right
IsTheta.sup
isTheta_zero_left πŸ“–mathematicalβ€”IsTheta
SeminormedAddCommGroup.toNorm
NormedAddCommGroup.toNorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Filter.EventuallyEq
Pi.instZero
NormedAddCommGroup.toAddCommGroup
β€”β€”
isTheta_zero_right πŸ“–mathematicalβ€”IsTheta
NormedAddCommGroup.toNorm
SeminormedAddCommGroup.toNorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Filter.EventuallyEq
Pi.instZero
NormedAddCommGroup.toAddCommGroup
β€”isTheta_comm
isTheta_zero_left

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
trans_isTheta πŸ“–β€”Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
Asymptotics.IsTheta
β€”β€”trans

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
add_isTheta πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsTheta
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Asymptotics.IsTheta.add_isLittleO
add_comm
right_isTheta_add πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsTheta
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”right_isBigO_add
add_isBigO
Asymptotics.isBigO_refl
right_isTheta_add' πŸ“–mathematicalAsymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
Asymptotics.IsTheta
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”right_isTheta_add
add_comm
trans_isTheta πŸ“–β€”Asymptotics.IsLittleO
Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
β€”β€”trans_isBigO

Asymptotics.IsTheta

Theorems

NameKindAssumesProvesValidatesDepends On
add_isLittleO πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsLittleO
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”trans
symm
Asymptotics.IsLittleO.right_isTheta_add'
Asymptotics.IsLittleO.trans_isTheta
comp_fst πŸ“–mathematicalAsymptotics.IsThetaSProd.sprod
Filter
Filter.instSProd
β€”Asymptotics.IsBigO.comp_fst
comp_snd πŸ“–mathematicalAsymptotics.IsThetaSProd.sprod
Filter
Filter.instSProd
β€”Asymptotics.IsBigO.comp_snd
const_mul_left πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”Asymptotics.isTheta_const_mul_left
const_mul_right πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”Asymptotics.isTheta_const_mul_right
const_smul_left πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”Asymptotics.isTheta_const_smul_left
const_smul_right πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”Asymptotics.isTheta_const_smul_right
div πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
β€”div_eq_mul_inv
mul
inv
eq_zero_iff πŸ“–mathematicalAsymptotics.IsTheta
NormedAddCommGroup.toNorm
Filter.Eventually
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Filter.Eventually.mp
Asymptotics.IsBigO.eq_zero_imp
Filter.Eventually.mono
fiberwise_left πŸ“–mathematicalAsymptotics.IsTheta
SProd.sprod
Filter
Filter.instSProd
Filter.Eventuallyβ€”Asymptotics.IsBigO.fiberwise_left
fiberwise_right πŸ“–mathematicalAsymptotics.IsTheta
SProd.sprod
Filter
Filter.instSProd
Filter.Eventuallyβ€”Asymptotics.IsBigO.fiberwise_right
finsetProd πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Finset.prod
CommRing.toCommMonoid
Field.toCommRing
NormedField.toField
β€”Asymptotics.IsBigO.finsetProd
isBigO
symm
inv πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
β€”Asymptotics.IsBigO.inv_rev
Asymptotics.IsBigO.eq_zero_imp
isBigO_congr_left πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigOβ€”trans_isBigO
symm
isBigO_congr_right πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigOβ€”Asymptotics.IsBigO.trans_isTheta
symm
isBoundedUnder_le_iff πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
β€”Asymptotics.isBigO_const_of_ne
one_ne_zero'
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
isBigO_congr_left
isLittleO_congr_left πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsLittleOβ€”trans_isLittleO
symm
isLittleO_congr_right πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsLittleOβ€”Asymptotics.IsLittleO.trans_isTheta
symm
isTheta_congr_left πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
β€”β€”Iff.and
isBigO_congr_left
isBigO_congr_right
isTheta_congr_right πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
β€”β€”Iff.and
isBigO_congr_right
isBigO_congr_left
listProd πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
β€”Asymptotics.IsBigO.listProd
isBigO
symm
mono πŸ“–β€”Asymptotics.IsTheta
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Asymptotics.IsBigO.mono
mul πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”smul
multisetProd πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Multiset.prod
CommRing.toCommMonoid
Field.toCommRing
NormedField.toField
Multiset.map
β€”Asymptotics.IsBigO.multisetProd
isBigO
symm
norm_left πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Real
Real.norm
Norm.norm
β€”Asymptotics.isTheta_norm_left
norm_right πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Real
Real.norm
Norm.norm
β€”Asymptotics.isTheta_norm_right
of_const_mul_left πŸ“–β€”Asymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”β€”Asymptotics.isTheta_const_mul_left
of_const_mul_right πŸ“–β€”Asymptotics.IsTheta
NormedField.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”β€”Asymptotics.isTheta_const_mul_right
of_const_smul_left πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”β€”Asymptotics.isTheta_const_smul_left
of_const_smul_right πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”β€”Asymptotics.isTheta_const_smul_right
of_norm_eventuallyEq πŸ“–mathematicalFilter.EventuallyEq
Real
Norm.norm
SeminormedAddCommGroup.toNorm
Asymptotics.IsTheta
Real.norm
β€”of_norm_eventuallyEq_norm
Filter.Eventually.mono
norm_norm
of_norm_eventuallyEq_norm πŸ“–mathematicalFilter.EventuallyEq
Real
Norm.norm
Asymptotics.IsThetaβ€”Asymptotics.IsBigO.of_bound'
Filter.EventuallyEq.le
Filter.EventuallyEq.symm
of_norm_left πŸ“–β€”Asymptotics.IsTheta
Real
Real.norm
Norm.norm
SeminormedAddCommGroup.toNorm
β€”β€”Asymptotics.isTheta_norm_left
of_norm_right πŸ“–β€”Asymptotics.IsTheta
Real
Real.norm
Norm.norm
SeminormedAddCommGroup.toNorm
β€”β€”Asymptotics.isTheta_norm_right
pow πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
β€”Asymptotics.IsBigO.pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
smul πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”Asymptotics.IsBigO.smul
NormedSpace.toIsBoundedSMul
NormedSpace.toNormSMulClass
sup πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Filter
Filter.instSup
β€”Asymptotics.IsBigO.sup
tendsto_norm_atTop_iff πŸ“–mathematicalAsymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Filter.Tendsto
Real
Norm.norm
Filter.atTop
Real.instPreorder
β€”Asymptotics.isLittleO_const_left_of_ne
one_ne_zero'
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
isLittleO_congr_right
tendsto_zero_iff πŸ“–mathematicalAsymptotics.IsTheta
NormedAddCommGroup.toNorm
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
isLittleO_congr_left
trans πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
β€”β€”Asymptotics.IsBigO.trans
trans_eventuallyEq πŸ“–β€”Asymptotics.IsTheta
Filter.EventuallyEq
β€”β€”Asymptotics.IsBigO.trans_eventuallyEq
Filter.EventuallyEq.trans_isBigO
Filter.EventuallyEq.symm
trans_isBigO πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsBigO
β€”β€”Asymptotics.IsBigO.trans
trans_isLittleO πŸ“–β€”Asymptotics.IsTheta
SeminormedAddCommGroup.toNorm
Asymptotics.IsLittleO
β€”β€”Asymptotics.IsBigO.trans_isLittleO
zpow πŸ“–mathematicalAsymptotics.IsTheta
NormedField.toNorm
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
β€”zpow_natCast
pow
zpow_negSucc
inv

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
isTheta_principal πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
IsCompact
Asymptotics.IsTheta
NormedAddGroup.toNorm
SeminormedAddGroup.toNorm
Filter.principal
β€”isBigO_principal
isBigO_rev_principal

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
isTheta πŸ“–mathematicalFilter.EventuallyEqAsymptotics.IsThetaβ€”trans_isTheta
Asymptotics.isTheta_rfl
trans_isTheta πŸ“–β€”Filter.EventuallyEq
Asymptotics.IsTheta
β€”β€”trans_isBigO
Asymptotics.IsBigO.trans_eventuallyEq
symm

---

← Back to Index