Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/BoxIntegral/Basic.lean

Statistics

MetricCount
DefinitionsHasIntegral, convergenceR, toBoxAdditive, integral, integralSum
5
Theoremsadd, integrable, integral_eq, mcShane_of_forall_isLittleO, mono, neg, of_bRiemann_eq_false_of_forall_isLittleO, of_le_Henstock_of_forall_isLittleO, of_mul, smul, sub, sum, tendsto, unique, add, cauchy_map_integralSum_toFilteriUnion, convergenceR_cond, dist_integralSum_integral_le_of_memBaseSet, dist_integralSum_le_of_memBaseSet, dist_integralSum_sum_integral_le_of_memBaseSet, dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq, hasIntegral, mono, neg, of_neg, of_smul, smul, sub, sum_integral_congr, tendsto_integralSum_sum_integral, tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity, tendsto_integralSum_toFilteriUnion_single, toBoxAdditive_apply, to_subbox, to_subbox_aux, hasIntegral_const, hasIntegral_iff, hasIntegral_zero, integrable_const, integrable_iff_cauchy, integrable_iff_cauchy_basis, integrable_neg, integrable_of_bounded_and_ae_continuous, integrable_of_bounded_and_ae_continuousWithinAt, integrable_of_continuousOn, integrable_zero, integralSum_add, integralSum_biUnionTagged, integralSum_biUnion_partition, integralSum_disjUnion, integralSum_fiberwise, integralSum_inf_partition, integralSum_neg, integralSum_smul, integralSum_sub_partitions, integral_add, integral_const, integral_neg, integral_nonneg, integral_smul, integral_sub, integral_zero, norm_integral_le_of_le_const, norm_integral_le_of_norm_le
64
Total69

BoxIntegral

Definitions

NameCategoryTheorems
HasIntegral πŸ“–MathDef
12 math, 5 bridgemath: hasIntegral_zero, hasIntegral_GP_pderiv, hasIntegral_GP_divergence_of_forall_hasDerivWithinAt, HasIntegral.of_mul, Integrable.to_subbox_aux, MeasureTheory.AEContinuous.hasBoxIntegral, Integrable.hasIntegral, MeasureTheory.ContinuousOn.hasBoxIntegral, hasIntegral_const, HasIntegral.of_le_Henstock_of_forall_isLittleO, hasIntegral_iff, HasIntegral.mcShane_of_forall_isLittleO
bridge: hasIntegralIndicatorConst, MeasureTheory.SimpleFunc.hasBoxIntegral, MeasureTheory.IntegrableOn.hasBoxIntegral, HasIntegral.of_bRiemann_eq_false_of_forall_isLittleO, HasIntegral.of_aeEq_zero
integral πŸ“–CompOp
21 math, 1 bridgemath: integral_sub, integral_zero, integral_add, hasIntegral_GP_pderiv, hasIntegral_GP_divergence_of_forall_hasDerivWithinAt, integral_neg, Integrable.toBoxAdditive_apply, Integrable.dist_integralSum_integral_le_of_memBaseSet, integral_nonneg, Integrable.dist_integralSum_sum_integral_le_of_memBaseSet, Integrable.hasIntegral, norm_integral_le_of_le_const, Integrable.sum_integral_congr, integral_smul, norm_volume_sub_integral_face_upper_sub_lower_smul_le, Integrable.tendsto_integralSum_toFilteriUnion_single, integral_const, Integrable.tendsto_integralSum_sum_integral, norm_integral_le_of_norm_le, Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq, HasIntegral.integral_eq
bridge: MeasureTheory.SimpleFunc.box_integral_eq_integral
integralSum πŸ“–CompOp
23 mathmath: integralSum_inf_partition, HasIntegral.tendsto, Integrable.dist_integralSum_le_of_memBaseSet, unitPartition.integralSum_eq_tsum_div, integralSum_add, Integrable.to_subbox_aux, Integrable.cauchy_map_integralSum_toFilteriUnion, Integrable.dist_integralSum_integral_le_of_memBaseSet, Integrable.dist_integralSum_sum_integral_le_of_memBaseSet, integralSum_neg, integralSum_biUnionTagged, integralSum_fiberwise, integrable_iff_cauchy_basis, Integrable.tendsto_integralSum_toFilteriUnion_single, integralSum_smul, integralSum_disjUnion, integralSum_sub_partitions, Integrable.tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity, integrable_iff_cauchy, integralSum_biUnion_partition, Integrable.tendsto_integralSum_sum_integral, hasIntegral_iff, Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq

Theorems

NameKindAssumesProvesValidatesDepends On
hasIntegral_const πŸ“–mathematicalβ€”HasIntegral
DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
BoxAdditiveMap
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
Box
WithTop.top
BoxAdditiveMap.instFunLikeBox
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.congr'
Filter.Eventually.mono
IntegrationParams.eventually_isPartition
BoxAdditiveMap.sum_partition_boxes
le_top
tendsto_const_nhds
hasIntegral_iff πŸ“–mathematicalβ€”HasIntegral
IntegrationParams.RCond
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
integralSum
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.HasBasis.tendsto_iff
IntegrationParams.hasBasis_toFilteriUnion_top
Metric.nhds_basis_closedBall
forall_swap
hasIntegral_zero πŸ“–mathematicalβ€”HasIntegral
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.map_zero
hasIntegral_const
integrable_const πŸ“–mathematicalβ€”Integrableβ€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
hasIntegral_const
integrable_iff_cauchy πŸ“–mathematicalβ€”Integrable
Cauchy
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.map
TaggedPrepartition
integralSum
IntegrationParams.toFilteriUnion
Top.top
Prepartition
OrderTop.toTop
Prepartition.instLE
Prepartition.instOrderTop
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
cauchy_map_iff_exists_tendsto
IntegrationParams.toFilteriUnion_neBot
integrable_iff_cauchy_basis πŸ“–mathematicalβ€”Integrable
IntegrationParams.RCond
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
integralSum
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integrable_iff_cauchy
cauchy_map_iff'
IntegrationParams.toFilteriUnion_neBot
Filter.HasBasis.tendsto_iff
Filter.HasBasis.prod_self
IntegrationParams.hasBasis_toFilteriUnion_top
Metric.uniformity_basis_dist_le
integrable_neg πŸ“–mathematicalβ€”Integrable
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Integrable.of_neg
Integrable.neg
integrable_of_bounded_and_ae_continuous πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Filter.Eventually
ContinuousAt
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.ae
MeasureTheory.Measure
MeasurableSpace.pi
Real.measurableSpace
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Integrable
BoxAdditiveMap.toSMul
Top.top
WithTop
Box
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
β€”MeasureTheory.Measure.instOuterMeasureClass
integrable_of_bounded_and_ae_continuousWithinAt
Filter.Eventually.filter_mono
MeasureTheory.ae_mono
MeasureTheory.Measure.restrict_le_self
Filter.Eventually.mono
ContinuousAt.continuousWithinAt
integrable_of_bounded_and_ae_continuousWithinAt πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Filter.Eventually
ContinuousWithinAt
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
OrderEmbedding
Box
Set
Box.instLE
Set.instLE
instFunLikeOrderEmbedding
Box.Icc
MeasureTheory.ae
MeasureTheory.Measure
MeasurableSpace.pi
Real.measurableSpace
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Integrable
BoxAdditiveMap.toSMul
Top.top
WithTop
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
β€”MeasureTheory.Measure.instOuterMeasureClass
Finite.of_fintype
integrable_iff_cauchy_basis
Nat.instAtLeastTwoHAddOfNat
exists_pos_mul_lt
Real.instIsStrictOrderedRing
Box.nonempty_coe
le_trans
norm_nonneg
Box.coe_subset_Icc
ne_of_gt
ENNReal.ofReal_pos
Filter.eventually_iff_exists_mem
eq_of_le_of_not_lt
MeasureTheory.OuterMeasure.mono
MeasureTheory.mem_ae_iff
not_lt_zero
ENNReal.instCanonicallyOrderedAdd
Set.exists_isOpen_lt_add
MeasureTheory.Measure.WeaklyRegular.toOuterRegular
MeasureTheory.Measure.WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite
TopologicalSpace.pseudoMetrizableSpace_pi
PseudoEMetricSpace.pseudoMetrizableSpace
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Finite.to_countable
instSecondCountableTopologyReal
Pi.borelSpace
Real.borelSpace
MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
instWeaklyLocallyCompactSpaceForallOfFinite
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.instIsFiniteMeasureOnCompactsRestrict
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
instSigmaCompactSpaceForallOfFinite
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
IsCompact.of_isClosed_subset
Box.isCompact_Icc
IsClosed.sdiff
IsCompact.isClosed
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.diff_subset
IsCompact.uniform_oscillationWithin
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
dist_eq_norm
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integralSum_sub_partitions
Finset.sum_congr
lt_of_le_of_lt
IsCompact.measure_lt_top
Finset.filter_subset
lt_top_iff_ne_top
Prepartition.le_of_mem'
Set.iUnion_subset_iff
Finset.sum_sdiff
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
norm_add_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
norm_smul
NormedSpace.toNormSMulClass
MeasureTheory.Measure.toBoxAdditive_apply
Real.norm_of_nonneg
MeasureTheory.measureReal_nonneg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Set.not_subset
Finset.mem_filter
Finset.mem_sdiff
Metric.edist_le_ediam_of_mem
Set.mem_image_of_mem
Metric.closedBall_subset_ball
div_two_lt_of_pos
Metric.mem_closedBall_comm
TaggedPrepartition.IsSubordinate.infPrepartition
IntegrationParams.MemBaseSet.isSubordinate
TaggedPrepartition.tag_mem_Icc
TaggedPrepartition.mem_infPrepartition_comm
edist_le_ofReal
le_of_lt
LE.le.trans
Metric.eball_ofReal
norm_sum_le
Finset.sum_le_sum
Finset.sum_mul
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
ENNReal.toReal_sum
Finset.tsum_subtype
ENNReal.toReal_mono
ne_of_lt
Finset.sdiff_subset
le_of_eq
MeasureTheory.measure_biUnion
Finset.countable_toSet
Prepartition.pairwiseDisjoint
Box.measurableSet_coe
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.mul_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
two_mul
norm_sub_le_of_le
norm_sum_le_of_le
ENNReal.toReal_ofReal
ENNReal.ofReal_ne_top
MeasureTheory.Measure.restrict_eq_self
HasSubset.Subset.trans
Set.instIsTransSubset
MeasureTheory.measure_biUnion_finset
zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_le_mul_of_nonneg_right
mul_nonneg_iff_of_pos_left
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
integrable_of_continuousOn πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
OrderEmbedding
Box
Set
Box.instLE
Set.instLE
instFunLikeOrderEmbedding
Box.Icc
Integrable
BoxAdditiveMap.toSMul
Top.top
WithTop
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
β€”integrable_of_bounded_and_ae_continuousWithinAt
NormedSpace.isBounded_iff_subset_smul_closedBall
IsCompact.isBounded
IsCompact.image_of_continuousOn
Box.isCompact_Icc
smul_unitClosedBall
Set.mem_image_of_mem
Filter.eventually_of_mem
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.mem_ae_iff
MeasureTheory.Measure.restrict_apply
MeasurableSet.compl_iff
Box.measurableSet_Icc
Finite.to_countable
Finite.of_fintype
Set.compl_inter_self
MeasureTheory.measure_empty
ContinuousOn.continuousWithinAt
integrable_zero πŸ“–mathematicalβ€”Integrable
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
hasIntegral_zero
integralSum_add πŸ“–mathematicalβ€”integralSum
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Finset.sum_congr
ContinuousLinearMap.map_add
Finset.sum_add_distrib
integralSum_biUnionTagged πŸ“–mathematicalβ€”integralSum
Prepartition.biUnionTagged
Finset.sum
Box
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prepartition.boxes
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prepartition.sum_biUnion_boxes
Finset.sum_congr
Prepartition.tag_biUnionTagged
integralSum_biUnion_partition πŸ“–mathematicalPrepartition.IsPartitionintegralSum
TaggedPrepartition.biUnionPrepartition
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prepartition.sum_biUnion_boxes
Finset.sum_congr
Prepartition.biUnionIndex_of_mem
BoxAdditiveMap.sum_partition_boxes
le_top
integralSum_disjUnion πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
TaggedPrepartition.iUnion
integralSum
TaggedPrepartition.disjUnion
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prepartition.sum_disj_union_boxes
Finset.sum_congr
TaggedPrepartition.disjUnion_tag_of_mem_left
TaggedPrepartition.disjUnion_tag_of_mem_right
integralSum_fiberwise πŸ“–mathematicalβ€”Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.image
Box
Prepartition.boxes
TaggedPrepartition.toPrepartition
integralSum
TaggedPrepartition.filter
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prepartition.sum_fiberwise
integralSum_inf_partition πŸ“–mathematicalPrepartition.IsPartitionintegralSum
TaggedPrepartition.infPrepartition
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integralSum_biUnion_partition
Prepartition.IsPartition.restrict
Prepartition.le_of_mem
integralSum_neg πŸ“–mathematicalβ€”integralSum
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Finset.sum_congr
ContinuousLinearMap.map_neg
Finset.sum_neg_distrib
integralSum_smul πŸ“–mathematicalβ€”integralSum
Real
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
Finset.smul_sum
integralSum_sub_partitions πŸ“–mathematicalTaggedPrepartition.IsPartitionSubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
integralSum
Finset.sum
Box
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prepartition.boxes
Prepartition
SemilatticeInf.toMin
Prepartition.instSemilatticeInf
TaggedPrepartition.toPrepartition
DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
BoxAdditiveMap
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
WithTop.top
BoxAdditiveMap.instFunLikeBox
TaggedPrepartition.tag
TaggedPrepartition.infPrepartition
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integralSum_inf_partition
integralSum.eq_1
Finset.sum_sub_distrib
Finset.sum_congr
inf_comm
integral_add πŸ“–mathematicalIntegrableintegral
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasIntegral.integral_eq
HasIntegral.add
Integrable.hasIntegral
integral_const πŸ“–mathematicalβ€”integral
DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
BoxAdditiveMap
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
Box
WithTop.top
BoxAdditiveMap.instFunLikeBox
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasIntegral.integral_eq
hasIntegral_const
integral_neg πŸ“–mathematicalβ€”integral
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasIntegral.integral_eq
HasIntegral.neg
Integrable.hasIntegral
integral.eq_1
Integrable.of_neg
neg_zero
integral_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
BoxAdditiveMap.toSMul
Top.top
WithTop
Box
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
β€”Finite.of_fintype
ge_of_tendsto'
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IntegrationParams.toFilteriUnion_neBot
Integrable.hasIntegral
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
ENNReal.toReal_nonneg
TaggedPrepartition.tag_mem_Icc
integral.eq_1
le_refl
integral_smul πŸ“–mathematicalβ€”integral
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
eq_or_ne
zero_smul
integral_zero
HasIntegral.integral_eq
HasIntegral.smul
Integrable.hasIntegral
Integrable.of_smul
integral.eq_1
smul_zero
integral_sub πŸ“–mathematicalIntegrableintegral
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasIntegral.integral_eq
HasIntegral.sub
Integrable.hasIntegral
integral_zero πŸ“–mathematicalβ€”integral
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasIntegral.integral_eq
hasIntegral_zero
norm_integral_le_of_le_const πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
integral
BoxAdditiveMap.toSMul
Top.top
WithTop
Box
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
Real.instMul
MeasureTheory.Measure.real
MeasurableSpace.pi
Real.measurableSpace
Box.toSet
β€”Finite.of_fintype
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integral_const
norm_integral_le_of_norm_le
integrable_const
norm_integral_le_of_norm_le πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Integrable
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
BoxAdditiveMap.toSMul
Top.top
WithTop
Box
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
integralβ€”Finite.of_fintype
le_of_tendsto_of_tendsto'
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IntegrationParams.toFilteriUnion_neBot
Filter.Tendsto.norm
Integrable.hasIntegral
norm_sum_le_of_le
norm_smul
NormedSpace.toNormSMulClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
MeasureTheory.measureReal_nonneg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
TaggedPrepartition.tag_mem_Icc
integral.eq_1
norm_zero
integral_nonneg
LE.le.trans
norm_nonneg

BoxIntegral.HasIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalBoxIntegral.HasIntegralPi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.add
integrable πŸ“–mathematicalBoxIntegral.HasIntegralBoxIntegral.Integrableβ€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
integral_eq πŸ“–mathematicalBoxIntegral.HasIntegralBoxIntegral.integralβ€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
unique
BoxIntegral.Integrable.hasIntegral
integrable
mcShane_of_forall_isLittleO πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
BoxIntegral.BoxAdditiveMap
Real.instAddCommMonoid
WithTop.some
BoxIntegral.Box
BoxIntegral.BoxAdditiveMap.instFunLikeBox
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
WithTop.top
Real.instMul
BoxIntegral.HasIntegral
BoxIntegral.IntegrationParams.McShane
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
of_bRiemann_eq_false_of_forall_isLittleO
Set.countable_empty
Set.diff_empty
Bool.coe_sort_false
mono πŸ“–β€”BoxIntegral.HasIntegral
BoxIntegral.IntegrationParams
Preorder.toLE
PartialOrder.toPreorder
BoxIntegral.IntegrationParams.instPartialOrder
β€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.mono_left
BoxIntegral.IntegrationParams.toFilteriUnion_mono
neg πŸ“–mathematicalBoxIntegral.HasIntegralPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.neg
IsTopologicalAddGroup.toContinuousNeg
of_bRiemann_eq_false_of_forall_isLittleO πŸ“–bridging (sound)BoxIntegral.IntegrationParams.bRiemann
Real
Real.instLE
Real.instZero
DFunLike.coe
BoxIntegral.BoxAdditiveMap
Real.instAddCommMonoid
WithTop.some
BoxIntegral.Box
BoxIntegral.BoxAdditiveMap.instFunLikeBox
BoxIntegral.IntegrationParams.bHenstock
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
WithTop.top
Real.instMul
BoxIntegral.HasIntegralBoxIntegral.IntegrationParams.bRiemannIsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.HasBasis.tendsto_iff
BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion_top
Metric.nhds_basis_closedBall
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
Real.instZeroLEOneClass
zero_lt_two
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.Countable.exists_pos_forall_sum_le
div_pos
exists_pos_mul_lt
BoxIntegral.IntegrationParams.rCond_of_bRiemann_eq_false
BoxIntegral.BoxAdditiveMap.sum_partition_boxes
le_rfl
Metric.mem_closedBall
BoxIntegral.integralSum.eq_1
Finset.sum_filter_add_sum_filter_not
add_halves
CharZero.NeZero.two
dist_add_add_le_of_le
Set.eq_empty_or_nonempty
Finset.sum_congr
Finset.filter.congr_simp
Finset.filter_false
dist_self
LT.lt.le
le_div_iffβ‚€'
Finset.mul_sum
Finset.mem_filter
BoxIntegral.TaggedPrepartition.tag_mem_Icc
BoxIntegral.Prepartition.le_of_mem'
BoxIntegral.IntegrationParams.MemBaseSet.isSubordinate
BoxIntegral.IntegrationParams.MemBaseSet.isHenstock
LE.le.trans
Finset.le_sup
BoxIntegral.IntegrationParams.MemBaseSet.distortion_le
dist_sum_sum_le_of_le
Finset.sum_comp
Finset.sum_le_sum
Nat.cast_two
Nat.cast_pow
nsmul_eq_mul
nsmul_le_nsmul_left
Finset.card_le_card
Finset.filter_subset_filter
Finset.filter_subset
BoxIntegral.TaggedPrepartition.IsHenstock.card_filter_tag_eq_le
Finset.coe_image
Set.image_subset_iff
Finset.sum_le_sum_of_subset_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_comm
nonempty_gt
instNoMaxOrderOfNontrivial
Real.instNontrivial
Function.sometimes_spec
of_le_Henstock_of_forall_isLittleO πŸ“–mathematicalBoxIntegral.IntegrationParams
Preorder.toLE
PartialOrder.toPreorder
BoxIntegral.IntegrationParams.instPartialOrder
BoxIntegral.IntegrationParams.Henstock
Real
Real.instLE
Real.instZero
DFunLike.coe
BoxIntegral.BoxAdditiveMap
Real.instAddCommMonoid
WithTop.some
BoxIntegral.Box
BoxIntegral.BoxAdditiveMap.instFunLikeBox
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Top.top
WithTop
WithTop.top
Real.instMul
BoxIntegral.HasIntegralβ€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
of_bRiemann_eq_false_of_forall_isLittleO
of_mul πŸ“–mathematicalBoxIntegral.IntegrationParams.RCond
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integralSum
Real.instMul
BoxIntegral.HasIntegralβ€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.hasIntegral_iff
exists_pos_mul_lt
Real.instIsStrictOrderedRing
LE.le.trans
LT.lt.le
smul πŸ“–mathematicalBoxIntegral.HasIntegralReal
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
tendsto_const_nhds
sub πŸ“–mathematicalBoxIntegral.HasIntegralPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
sub_eq_add_neg
add
neg
sum πŸ“–mathematicalBoxIntegral.HasIntegralFinset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Finset.induction_on
Finset.sum_insert
add
Finset.forall_mem_insert
tendsto πŸ“–mathematicalBoxIntegral.HasIntegralFilter.Tendsto
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
BoxIntegral.IntegrationParams.toFilteriUnion
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
BoxIntegral.Prepartition.instLE
BoxIntegral.Prepartition.instOrderTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
unique πŸ“–β€”BoxIntegral.HasIntegralβ€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
BoxIntegral.IntegrationParams.toFilteriUnion_neBot

BoxIntegral.Integrable

Definitions

NameCategoryTheorems
convergenceR πŸ“–CompOp
1 mathmath: convergenceR_cond
toBoxAdditive πŸ“–CompOp
1 mathmath: toBoxAdditive_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalBoxIntegral.IntegrablePi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.HasIntegral.integrable
BoxIntegral.HasIntegral.add
hasIntegral
cauchy_map_integralSum_toFilteriUnion πŸ“–mathematicalBoxIntegral.IntegrableCauchy
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.map
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
BoxIntegral.IntegrationParams.toFilteriUnion
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.map_neBot
BoxIntegral.IntegrationParams.toFilteriUnion_neBot
Filter.prod_map_map_eq
BoxIntegral.IntegrationParams.toFilter_inf_iUnion_eq
Filter.prod_inf_prod
Filter.prod_principal_principal
Filter.Tendsto.mono_left
tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity
inf_le_inf_left
Filter.principal_mono
convergenceR_cond πŸ“–mathematicalBoxIntegral.IntegrableBoxIntegral.IntegrationParams.RCond
convergenceR
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
convergenceR.eq_1
BoxIntegral.hasIntegral_iff
hasIntegral
dist_integralSum_integral_le_of_memBaseSet πŸ“–mathematicalBoxIntegral.Integrable
Real
Real.instLT
Real.instZero
BoxIntegral.IntegrationParams.MemBaseSet
convergenceR
BoxIntegral.TaggedPrepartition.IsPartition
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integralSum
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.hasIntegral_iff
hasIntegral
convergenceR.eq_1
dist_integralSum_le_of_memBaseSet πŸ“–mathematicalBoxIntegral.Integrable
Real
Real.instLT
Real.instZero
BoxIntegral.IntegrationParams.MemBaseSet
convergenceR
BoxIntegral.TaggedPrepartition.iUnion
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integralSum
Real.instAdd
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl
instIsLinearOrder_mathlib
instLawfulOrderInf_mathlib
dist_integralSum_integral_le_of_memBaseSet
BoxIntegral.IntegrationParams.MemBaseSet.unionComplToSubordinate
min_le_left
BoxIntegral.TaggedPrepartition.isPartition_unionComplToSubordinate
min_le_right
BoxIntegral.integralSum_disjUnion
dist_add_right
NormedAddGroup.to_isIsometricVAdd_right
LE.le.trans
dist_triangle_right
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
dist_integralSum_sum_integral_le_of_memBaseSet πŸ“–mathematicalBoxIntegral.Integrable
Real
Real.instLT
Real.instZero
BoxIntegral.IntegrationParams.MemBaseSet
convergenceR
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integralSum
Finset.sum
BoxIntegral.Box
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
BoxIntegral.Prepartition.boxes
BoxIntegral.TaggedPrepartition.toPrepartition
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq
dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq πŸ“–mathematicalBoxIntegral.Integrable
Real
Real.instLT
Real.instZero
BoxIntegral.IntegrationParams.MemBaseSet
convergenceR
BoxIntegral.TaggedPrepartition.iUnion
BoxIntegral.Prepartition.iUnion
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integralSum
Finset.sum
BoxIntegral.Box
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
BoxIntegral.Prepartition.boxes
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_add_one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_pos
Finite.of_fintype
BoxIntegral.Prepartition.le_of_mem
to_subbox
instIsLinearOrder_mathlib
instLawfulOrderInf_mathlib
le_trans
Finset.le_sup
le_max_left
BoxIntegral.IntegrationParams.exists_memBaseSet_isPartition
BoxIntegral.IntegrationParams.MemBaseSet.mono
le_rfl
min_le_right
min_le_left
dist_integralSum_integral_le_of_memBaseSet
BoxIntegral.IntegrationParams.biUnionTagged_memBaseSet
le_max_right
BoxIntegral.Prepartition.iUnion_biUnion_partition
dist_integralSum_le_of_memBaseSet
dist_triangle
add_le_add
covariant_swap_add_of_covariant_add
BoxIntegral.integralSum_biUnionTagged
dist_sum_sum_le_of_le
Finset.sum_congr
Finset.sum_const
nsmul_eq_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Right.add_pos_of_nonneg_of_pos
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Function.sometimes_spec
hasIntegral πŸ“–mathematicalBoxIntegral.IntegrableBoxIntegral.HasIntegral
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.integral.eq_1
mono πŸ“–β€”BoxIntegral.Integrable
BoxIntegral.IntegrationParams
Preorder.toLE
PartialOrder.toPreorder
BoxIntegral.IntegrationParams.instPartialOrder
β€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.HasIntegral.mono
hasIntegral
neg πŸ“–mathematicalBoxIntegral.IntegrablePi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.HasIntegral.integrable
BoxIntegral.HasIntegral.neg
hasIntegral
of_neg πŸ“–β€”BoxIntegral.Integrable
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
neg
neg_neg
of_smul πŸ“–β€”BoxIntegral.Integrable
Real
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
inv_smul_smulβ‚€
smul
smul πŸ“–mathematicalBoxIntegral.IntegrableReal
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.HasIntegral.integrable
BoxIntegral.HasIntegral.smul
hasIntegral
sub πŸ“–mathematicalBoxIntegral.IntegrablePi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
BoxIntegral.HasIntegral.integrable
BoxIntegral.HasIntegral.sub
hasIntegral
sum_integral_congr πŸ“–mathematicalBoxIntegral.Integrable
BoxIntegral.Prepartition.iUnion
Finset.sum
BoxIntegral.Box
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
BoxIntegral.Prepartition.boxes
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
BoxIntegral.IntegrationParams.toFilteriUnion_neBot
tendsto_integralSum_sum_integral
BoxIntegral.IntegrationParams.toFilteriUnion_congr
tendsto_integralSum_sum_integral πŸ“–mathematicalBoxIntegral.IntegrableFilter.Tendsto
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
BoxIntegral.IntegrationParams.toFilteriUnion
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Finset.sum
BoxIntegral.Box
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
BoxIntegral.Prepartition.boxes
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.HasBasis.tendsto_iff
BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion
Metric.nhds_basis_closedBall
convergenceR_cond
dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq
tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity πŸ“–mathematicalBoxIntegral.IntegrableFilter.Tendsto
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
Filter
Filter.instInf
SProd.sprod
Filter.instSProd
BoxIntegral.IntegrationParams.toFilter
Filter.principal
setOf
Set
BoxIntegral.TaggedPrepartition.iUnion
uniformity
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.HasBasis.tendsto_iff
Filter.HasBasis.inf_principal
Filter.HasBasis.prod_self
BoxIntegral.IntegrationParams.hasBasis_toFilter
Metric.uniformity_basis_dist_le
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
convergenceR_cond
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
dist_integralSum_le_of_memBaseSet
tendsto_integralSum_toFilteriUnion_single πŸ“–mathematicalBoxIntegral.Integrable
BoxIntegral.Box
BoxIntegral.Box.instLE
Filter.Tendsto
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
BoxIntegral.IntegrationParams.toFilteriUnion
BoxIntegral.Prepartition.single
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
to_subbox_aux
BoxIntegral.HasIntegral.integral_eq
toBoxAdditive_apply πŸ“–mathematicalBoxIntegral.IntegrableDFunLike.coe
BoxIntegral.BoxAdditiveMap
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
WithTop.some
BoxIntegral.Box
BoxIntegral.BoxAdditiveMap.instFunLikeBox
toBoxAdditive
BoxIntegral.integral
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
to_subbox πŸ“–β€”BoxIntegral.Integrable
BoxIntegral.Box
BoxIntegral.Box.instLE
β€”β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
to_subbox_aux
to_subbox_aux πŸ“–mathematicalBoxIntegral.Integrable
BoxIntegral.Box
BoxIntegral.Box.instLE
BoxIntegral.HasIntegral
Filter.Tendsto
BoxIntegral.TaggedPrepartition
BoxIntegral.integralSum
BoxIntegral.IntegrationParams.toFilteriUnion
BoxIntegral.Prepartition.single
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.comp
BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top
cauchy_map_iff_exists_tendsto
BoxIntegral.IntegrationParams.toFilteriUnion_neBot
cauchy_map_integralSum_toFilteriUnion

---

← Back to Index