Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/BoxIntegral/Box/Basic.lean

Statistics

MetricCount
DefinitionsIoo, inf, distortion, face, instCoeTCSetForallReal, instInhabited, instLE, instLatticeWithBot, instMembershipForallReal, instPartialOrder, instSemilatticeSup, lower, mk', toSet, upper, withBotCoe, withBotToSet
17
TheoremsIcc_def, Icc_eq_pi, Ioo_subset_Icc, Ioo_subset_coe, antitone_lower, biUnion_coe_eq_coe, coe_bot, coe_coe, coe_eq_pi, coe_inf, coe_inj, coe_mk', coe_ne_empty, coe_subset_Icc, coe_subset_coe, continuousOn_face_Icc, diam_Icc_le_of_distortion_le, disjoint_coe, disjoint_withBotCoe, dist_le_distortion_mul, distortion_eq_of_sub_eq_div, empty_ne_coe, exists_mem, exists_seq_mono_tendsto, ext, ext_iff, face_lower, face_mk, face_mono, face_upper, iUnion_Ioo_of_tendsto, injective_coe, isBounded, isBounded_Icc, isCompact_Icc, isSome_iff, le_TFAE, le_def, le_iff_Icc, le_iff_bounds, lower_le_upper, lower_lt_upper, lower_mem_Icc, lower_ne_upper, mapsTo_insertNth_face, mapsTo_insertNth_face_Icc, mem_coe, mem_def, mem_mk, mem_univ_Ioc, mk'_eq_bot, mk'_eq_coe, monotone_face, monotone_upper, ne_of_disjoint_coe, nndist_le_distortion_mul, nonempty_coe, not_disjoint_coe_iff_nonempty_inter, upper_mem, upper_mem_Icc, withBotCoe_inj, withBotCoe_subset_iff
62
Total79

BoxIntegral.Box

Definitions

NameCategoryTheorems
Ioo πŸ“–CompOp
6 mathmath: Ioo_subset_coe, iUnion_Ioo_of_tendsto, Ioo_ae_eq_Icc, Ioo_subset_Icc, exists_seq_mono_tendsto, measurableSet_Ioo
distortion πŸ“–CompOp
11 mathmath: BoxIntegral.Prepartition.distortion_le_of_mem, nndist_le_distortion_mul, exists_taggedPartition_isHenstock_isSubordinate_homothetic, distortion_eq_of_sub_eq_div, BoxIntegral.TaggedPrepartition.distortion_le_of_mem, dist_le_distortion_mul, BoxIntegral.Prepartition.distortion_top, BoxIntegral.Prepartition.distortion_le_iff, BoxIntegral.TaggedPrepartition.distortion_le_iff, BoxIntegral.IntegrationParams.toFilterDistortion_neBot, BoxIntegral.TaggedPrepartition.distortion_single
face πŸ“–CompOp
12 mathmath: face_mono, monotone_face, BoxIntegral.hasIntegral_GP_pderiv, BoxIntegral.hasIntegral_GP_divergence_of_forall_hasDerivWithinAt, face_mk, face_lower, continuousOn_face_Icc, volume_face_mul, mapsTo_insertNth_face, mapsTo_insertNth_face_Icc, BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le, face_upper
instCoeTCSetForallReal πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
35 mathmath: splitCenterBox_le, BoxIntegral.TaggedPrepartition.tag_mem_Icc, upper_mem_Icc, measurableSet_Icc, le_TFAE, BoxIntegral.Prepartition.le_of_mem, BoxIntegral.unitPartition.mem_admissibleIndex_iff, le_iff_Icc, BoxIntegral.Prepartition.card_filter_mem_Icc_le, isCompact_Icc, le_iff_bounds, measure_Icc_lt_top, coe_ae_eq_Icc, Ioo_ae_eq_Icc, BoxIntegral.Prepartition.le_biUnionIndex, lower_mem_Icc, Icc_def, isBounded_Icc, BoxIntegral.Prepartition.IsPartition.le_iff, mapsTo_insertNth_face_Icc, le_def, Ioo_subset_Icc, exists_seq_mono_tendsto, diam_Icc_le_of_distortion_le, BoxIntegral.Prepartition.injOn_setOf_mem_Icc_setOf_lower_eq, BoxIntegral.TaggedPrepartition.IsSubordinate.diam_le, BoxIntegral.Prepartition.le_iff_nonempty_imp_le_and_iUnion_subset, Icc_eq_pi, coe_subset_Icc, BoxIntegral.Prepartition.le_of_mem', coe_subset_coe, BoxIntegral.Prepartition.not_disjoint_imp_le_of_subset_of_mem_splitMany, BoxIntegral.unitPartition.diam_boxIcc, BoxIntegral.Prepartition.biUnionIndex_le, BoxIntegral.Prepartition.le_def
instLatticeWithBot πŸ“–CompOpβ€”
instMembershipForallReal πŸ“–CompOp
16 mathmath: BoxIntegral.unitPartition.mem_box_iff', exists_mem_splitCenterBox, BoxIntegral.unitPartition.tag_mem, ext_iff, BoxIntegral.unitPartition.mem_box_iff, BoxIntegral.TaggedPrepartition.mem_iUnion, mem_splitCenterBox, mem_mk, mem_coe, le_def, mem_def, BoxIntegral.unitPartition.mem_box_iff_index, exists_mem, upper_mem, mem_univ_Ioc, BoxIntegral.Prepartition.mem_iUnion
instPartialOrder πŸ“–CompOp
17 mathmath: BoxIntegral.TaggedPrepartition.isHenstock_single, disjoint_withBotCoe, Ioo_subset_coe, splitUpper_le, monotone_face, splitLower_le, Ioo_ae_eq_Icc, not_disjoint_coe_iff_nonempty_inter, monotone_upper, disjoint_splitLower_splitUpper, Ioo_subset_Icc, exists_seq_mono_tendsto, withBotCoe_subset_iff, disjoint_coe, measurableSet_Ioo, antitone_lower, BoxIntegral.TaggedPrepartition.isPartition_single
instSemilatticeSup πŸ“–CompOpβ€”
lower πŸ“–CompOp
34 mathmath: le_TFAE, upper_sub_lower_splitCenterBox, BoxIntegral.hasIntegral_GP_pderiv, BoxIntegral.hasIntegral_GP_divergence_of_forall_hasDerivWithinAt, face_lower, le_iff_bounds, nndist_le_distortion_mul, splitUpper_eq_self, BoxIntegral.BoxAdditiveMap.volume_apply, exists_taggedPartition_isHenstock_isSubordinate_homothetic, dist_le_distortion_mul, mem_splitCenterBox, volume_face_mul, lower_mem_Icc, volume_apply', BoxIntegral.unitPartition.box_lower, Icc_def, splitLower_eq_bot, exists_seq_mono_tendsto, mk'_eq_coe, diam_Icc_le_of_distortion_le, BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le, BoxIntegral.Prepartition.injOn_setOf_mem_Icc_setOf_lower_eq, lower_le_upper, mem_def, Icc_eq_pi, BoxIntegral.Prepartition.upper_sub_lower_of_mem_splitCenter, coe_eq_pi, volume_apply, lower_lt_upper, BoxIntegral.unitPartition.box.upper_sub_lower, mem_univ_Ioc, antitone_lower, BoxIntegral.Prepartition.lower_le_lower
mk' πŸ“–CompOp
3 mathmath: coe_mk', mk'_eq_bot, mk'_eq_coe
toSet πŸ“–CompOp
59 math, 4 bridgemath: BoxIntegral.Prepartition.measure_iUnion_toReal, disjoint_splitCenterBox, coe_coe, isBounded, le_TFAE, measurableSet_coe, Ioo_subset_coe, coe_inj, BoxIntegral.Prepartition.subset_iUnion, BoxIntegral.Prepartition.exists_iUnion_eq_diff, BoxIntegral.Prepartition.IsPartition.iUnion_eq, BoxIntegral.Prepartition.mem_split_iff', BoxIntegral.Prepartition.iUnion_def, measure_coe_lt_top, MeasureTheory.AEContinuous.hasBoxIntegral, BoxIntegral.Prepartition.mem_restrict', BoxIntegral.Prepartition.iUnion_subset, coe_ae_eq_Icc, nonempty_coe, BoxIntegral.unitPartition.disjoint, BoxIntegral.Prepartition.exists_splitMany_inf_eq_filter_of_finite, mem_coe, volume_apply', BoxIntegral.norm_integral_le_of_le_const, not_disjoint_coe_iff_nonempty_inter, BoxIntegral.Prepartition.iUnion_top, biUnion_coe_eq_coe, BoxIntegral.Prepartition.pairwiseDisjoint, BoxIntegral.unitPartition.setFinite_index, BoxIntegral.Prepartition.iUnion_compl, mapsTo_insertNth_face, BoxIntegral.TaggedPrepartition.subset_iUnion, BoxIntegral.le_hasIntegralVertices_of_isBounded, coe_splitLower, BoxIntegral.TaggedPrepartition.iUnion_subset, MeasureTheory.ContinuousOn.hasBoxIntegral, iUnion_coe_splitCenterBox, disjoint_coe, BoxIntegral.TaggedPrepartition.iUnion_single, BoxIntegral.Prepartition.coe_eq_of_mem_split_of_mem_le, BoxIntegral.Prepartition.iUnion_def', BoxIntegral.Prepartition.iUnion_splitMany, MeasureTheory.Measure.toBoxAdditive_apply, BoxIntegral.Prepartition.iUnion_restrict, BoxIntegral.Prepartition.isPartition_iff_iUnion_eq, BoxIntegral.TaggedPrepartition.isPartition_iff_iUnion_eq, coe_subset_Icc, coe_eq_pi, BoxIntegral.Prepartition.coe_eq_of_mem_split_of_lt_mem, BoxIntegral.TaggedPrepartition.iUnion_def, BoxIntegral.unitPartition.volume_box, BoxIntegral.Prepartition.disjoint_coe_of_mem, coe_subset_coe, BoxIntegral.Prepartition.eventually_splitMany_inf_eq_filter, coe_splitUpper, BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl, injective_coe, BoxIntegral.Prepartition.iUnion_split, BoxIntegral.Prepartition.iUnion_single
bridge: BoxIntegral.hasIntegralIndicatorConst, BoxIntegral.IntegrationParams.MemBaseSet.exists_compl, MeasureTheory.SimpleFunc.hasBoxIntegral, MeasureTheory.SimpleFunc.box_integral_eq_integral
upper πŸ“–CompOp
34 mathmath: splitUpper_eq_bot, upper_mem_Icc, BoxIntegral.unitPartition.box_upper, le_TFAE, upper_sub_lower_splitCenterBox, BoxIntegral.hasIntegral_GP_pderiv, BoxIntegral.hasIntegral_GP_divergence_of_forall_hasDerivWithinAt, le_iff_bounds, nndist_le_distortion_mul, BoxIntegral.BoxAdditiveMap.volume_apply, exists_taggedPartition_isHenstock_isSubordinate_homothetic, dist_le_distortion_mul, mem_splitCenterBox, volume_face_mul, volume_apply', BoxIntegral.Prepartition.upper_le_upper, Icc_def, monotone_upper, exists_seq_mono_tendsto, mk'_eq_coe, diam_Icc_le_of_distortion_le, BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le, face_upper, lower_le_upper, mem_def, Icc_eq_pi, BoxIntegral.Prepartition.upper_sub_lower_of_mem_splitCenter, coe_eq_pi, volume_apply, lower_lt_upper, splitLower_eq_self, BoxIntegral.unitPartition.box.upper_sub_lower, upper_mem, mem_univ_Ioc
withBotCoe πŸ“–CompOpβ€”
withBotToSet πŸ“–CompOp
12 mathmath: coe_coe, coe_bot, disjoint_withBotCoe, coe_mk', isSome_iff, biUnion_coe_eq_coe, coe_inf, coe_splitLower, withBotCoe_subset_iff, withBotCoe_inj, BoxIntegral.Prepartition.iUnion_ofWithBot, coe_splitUpper

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_def πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
Set.Icc
Pi.preorder
Real
Real.instPreorder
lower
upper
β€”β€”
Icc_eq_pi πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
Set.pi
Real
Set.univ
Set.Icc
Real.instPreorder
lower
upper
β€”Set.pi_univ_Icc
Ioo_subset_Icc πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
OrderHom
BoxIntegral.Box
PartialOrder.toPreorder
instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
Ioo
OrderEmbedding
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”HasSubset.Subset.trans
Set.instIsTransSubset
Ioo_subset_coe
coe_subset_Icc
Ioo_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
OrderHom
BoxIntegral.Box
PartialOrder.toPreorder
instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
Ioo
toSet
β€”Set.Ioo_subset_Ioc_self
antitone_lower πŸ“–mathematicalβ€”Antitone
BoxIntegral.Box
PartialOrder.toPreorder
instPartialOrder
Pi.preorder
Real
Real.instPreorder
lower
β€”le_iff_bounds
biUnion_coe_eq_coe πŸ“–mathematicalβ€”Set.iUnion
BoxIntegral.Box
WithBot
WithBot.some
toSet
withBotToSet
β€”Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.iUnion_iUnion_eq_left
coe_bot πŸ“–mathematicalβ€”withBotToSet
Bot.bot
WithBot
BoxIntegral.Box
WithBot.bot
Set
Set.instEmptyCollection
β€”β€”
coe_coe πŸ“–mathematicalβ€”withBotToSet
WithBot.some
BoxIntegral.Box
toSet
β€”β€”
coe_eq_pi πŸ“–mathematicalβ€”toSet
Set.pi
Real
Set.univ
Set.Ioc
Real.instPreorder
lower
upper
β€”Set.ext
mem_univ_Ioc
coe_inf πŸ“–mathematicalβ€”withBotToSet
WithBot
BoxIntegral.Box
WithBot.inf
Set
Set.instInter
β€”Set.empty_inter
Set.inter_empty
coe_mk'
coe_eq_pi
Set.Ioc_inter_Ioc
coe_inj πŸ“–mathematicalβ€”toSetβ€”injective_coe
coe_mk' πŸ“–mathematicalβ€”withBotToSet
mk'
Set.pi
Real
Set.univ
Set.Ioc
Real.instPreorder
β€”mk'.eq_1
coe_eq_pi
coe_bot
Set.univ_pi_eq_empty
Set.Ioc_eq_empty
coe_ne_empty πŸ“–β€”β€”β€”β€”Set.Nonempty.ne_empty
nonempty_coe
coe_subset_Icc πŸ“–mathematicalβ€”Set
Set.instHasSubset
toSet
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”LT.lt.le
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
toSet
BoxIntegral.Box
instLE
β€”β€”
continuousOn_face_Icc πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
Set.instMembership
Set.Icc
Real.instPreorder
lower
upper
Fin.insertNth
face
β€”ContinuousOn.comp
ContinuousOn.finInsertNth
continuousOn_const
continuousOn_id
mapsTo_insertNth_face_Icc
diam_Icc_le_of_distortion_le πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
distortion
Real
Real.instLE
Metric.diam
pseudoMetricSpacePi
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
Real.instMul
NNReal.toReal
Real.instSub
upper
lower
β€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lower_le_upper
Metric.diam_le_of_forall_dist_le
Real.dist_le_of_mem_pi_Icc
dist_le_distortion_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
disjoint_coe πŸ“–mathematicalβ€”Disjoint
WithBot
BoxIntegral.Box
WithBot.instPartialOrder
instPartialOrder
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
WithBot.some
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
toSet
β€”disjoint_withBotCoe
disjoint_withBotCoe πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
withBotToSet
WithBot
BoxIntegral.Box
WithBot.instPartialOrder
instPartialOrder
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
β€”coe_inf
dist_le_distortion_mul πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
lower
upper
Real.instMul
NNReal.toReal
distortion
Real.instSub
β€”sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lower_lt_upper
abs_of_neg
neg_sub
nndist_le_distortion_mul
distortion_eq_of_sub_eq_div πŸ“–mathematicalReal
Real.instSub
upper
lower
DivInvMonoid.toDiv
Real.instDivInvMonoid
distortionβ€”Real.nndist_eq'
map_divβ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
NNReal.eq
div_nonpos_of_nonneg_of_nonpos
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lower_le_upper
not_lt
LE.le.not_gt
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
lower_lt_upper
map_ne_zero
LT.lt.ne'
NNReal.finset_sup_div
div_div_div_cancel_rightβ‚€
empty_ne_coe πŸ“–β€”β€”β€”β€”coe_ne_empty
exists_mem πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
β€”upper_mem
exists_seq_mono_tendsto πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
OrderHom
Nat.instPreorder
PartialOrder.toPreorder
instPartialOrder
OrderHom.instFunLike
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Ioo
Filter.Tendsto
lower
Filter.atTop
nhds
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
upper
β€”le_iff_bounds
StrictAnti.antitone
StrictMono.monotone
LT.lt.trans_le
LE.le.trans_lt
tendsto_pi_nhds
exists_seq_strictAnti_strictMono_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
lower_lt_upper
ext πŸ“–β€”BoxIntegral.Box
instMembershipForallReal
β€”β€”injective_coe
Set.ext
ext_iff πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
β€”ext
face_lower πŸ“–mathematicalβ€”lower
face
Fin.succAbove
β€”β€”
face_mk πŸ“–mathematicalReal
Real.instLT
face
Fin.succAbove
β€”β€”
face_mono πŸ“–mathematicalBoxIntegral.Box
instLE
faceβ€”Set.Ioc_subset_Ioc
le_iff_bounds
face_upper πŸ“–mathematicalβ€”upper
face
Fin.succAbove
β€”β€”
iUnion_Ioo_of_tendsto πŸ“–mathematicalMonotone
BoxIntegral.Box
Nat.instPreorder
PartialOrder.toPreorder
instPartialOrder
Filter.Tendsto
lower
Filter.atTop
nhds
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
upper
Set.iUnion
DFunLike.coe
OrderHom
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
Ioo
β€”Monotone.comp_antitone
Function.monotone_eval
Antitone.comp_monotone
antitone_lower
Monotone.comp
monotone_upper
Set.iUnion_univ_pi_of_monotone
Antitone.Ioo
Set.pi_congr
iUnion_Ioo_of_mono_of_isGLB_of_isLUB
isGLB_of_tendsto_atTop
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_pi_nhds
isLUB_of_tendsto_atTop
injective_coe πŸ“–mathematicalβ€”BoxIntegral.Box
Set
toSet
β€”le_antisymm
isBounded πŸ“–mathematicalβ€”Bornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
toSet
β€”Bornology.IsBounded.subset
isBounded_Icc
coe_subset_Icc
isBounded_Icc πŸ“–mathematicalβ€”Bornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”nonempty_fintype
Metric.isBounded_Icc
Pi.compact_Icc_space'
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
isCompact_Icc πŸ“–mathematicalβ€”IsCompact
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”CompactIccSpace.isCompact_Icc
Pi.compact_Icc_space'
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
isSome_iff πŸ“–mathematicalβ€”BoxIntegral.Box
Set.Nonempty
withBotToSet
β€”nonempty_coe
le_TFAE πŸ“–mathematicalβ€”List.TFAE
BoxIntegral.Box
instLE
Set
Set.instHasSubset
toSet
Set.Icc
Pi.preorder
Real
Real.instPreorder
lower
upper
Pi.hasLe
Real.instLE
β€”coe_eq_pi
closure_pi_set
closure_Ioc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Set.pi_univ_Icc
closure_mono
Set.Icc_subset_Icc_iff
lower_le_upper
Set.Ioc_subset_Ioc
List.tfae_of_cycle
le_def πŸ“–mathematicalβ€”BoxIntegral.Box
instLE
instMembershipForallReal
β€”β€”
le_iff_Icc πŸ“–mathematicalβ€”BoxIntegral.Box
instLE
Set
Set.instHasSubset
DFunLike.coe
OrderEmbedding
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”List.TFAE.out
le_TFAE
le_iff_bounds πŸ“–mathematicalβ€”BoxIntegral.Box
instLE
Pi.hasLe
Real
Real.instLE
lower
upper
β€”List.TFAE.out
le_TFAE
lower_le_upper πŸ“–mathematicalβ€”Pi.hasLe
Real
Real.instLE
lower
upper
β€”LT.lt.le
lower_lt_upper
lower_lt_upper πŸ“–mathematicalβ€”Real
Real.instLT
lower
upper
β€”β€”
lower_mem_Icc πŸ“–mathematicalβ€”Set
Set.instMembership
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
lower
β€”Set.left_mem_Icc
lower_le_upper
lower_ne_upper πŸ“–β€”β€”β€”β€”LT.lt.ne
lower_lt_upper
mapsTo_insertNth_face πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
lower
upper
Set.MapsTo
Fin.insertNth
toSet
face
β€”Fin.forall_iff_succAbove
Fin.insertNth_apply_same
Fin.insertNth_apply_succAbove
mapsTo_insertNth_face_Icc πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
lower
upper
Set.MapsTo
Fin.insertNth
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
face
β€”Fin.insertNth_mem_Icc
mem_coe πŸ“–mathematicalβ€”Set
Set.instMembership
toSet
BoxIntegral.Box
instMembershipForallReal
β€”β€”
mem_def πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
lower
upper
β€”β€”
mem_mk πŸ“–mathematicalReal
Real.instLT
BoxIntegral.Box
instMembershipForallReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
β€”β€”
mem_univ_Ioc πŸ“–mathematicalβ€”Set
Set.instMembership
Set.pi
Real
Set.univ
Set.Ioc
Real.instPreorder
lower
upper
BoxIntegral.Box
instMembershipForallReal
β€”Set.mem_univ_pi
mk'_eq_bot πŸ“–mathematicalβ€”mk'
Bot.bot
WithBot
BoxIntegral.Box
WithBot.bot
Real
Real.instLE
β€”mk'.eq_1
mk'_eq_coe πŸ“–mathematicalβ€”mk'
WithBot.some
BoxIntegral.Box
lower
upper
β€”mk'.eq_1
monotone_face πŸ“–mathematicalβ€”Monotone
BoxIntegral.Box
PartialOrder.toPreorder
instPartialOrder
face
β€”face_mono
monotone_upper πŸ“–mathematicalβ€”Monotone
BoxIntegral.Box
PartialOrder.toPreorder
instPartialOrder
Pi.preorder
Real
Real.instPreorder
upper
β€”le_iff_bounds
ne_of_disjoint_coe πŸ“–β€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
toSet
β€”β€”Disjoint.ne
coe_ne_empty
nndist_le_distortion_mul πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
pseudoMetricSpacePi
Real
Real.pseudoMetricSpace
lower
upper
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
distortion
β€”div_mul_cancelβ‚€
nndist_eq_zero
LT.lt.ne
lower_lt_upper
distortion.eq_1
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
NNReal.mulLeftMono
Finset.le_sup
Finset.mem_univ
nonempty_coe πŸ“–mathematicalβ€”Set.Nonempty
toSet
β€”exists_mem
not_disjoint_coe_iff_nonempty_inter πŸ“–mathematicalβ€”Disjoint
WithBot
BoxIntegral.Box
WithBot.instPartialOrder
instPartialOrder
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
WithBot.some
Set.Nonempty
Set
Set.instInter
toSet
β€”disjoint_coe
Set.not_disjoint_iff_nonempty_inter
upper_mem πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
upper
β€”Set.right_mem_Ioc
lower_lt_upper
upper_mem_Icc πŸ“–mathematicalβ€”Set
Set.instMembership
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
upper
β€”Set.right_mem_Icc
lower_le_upper
withBotCoe_inj πŸ“–mathematicalβ€”withBotToSetβ€”β€”
withBotCoe_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
withBotToSet
WithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
instPartialOrder
β€”β€”

BoxIntegral.Box.WithBot

Definitions

NameCategoryTheorems
inf πŸ“–CompOp
3 mathmath: BoxIntegral.Box.coe_inf, BoxIntegral.Prepartition.mem_inf, BoxIntegral.Prepartition.mem_restrict

---

← Back to Index