Documentation Verification Report

SubboxInduction

πŸ“ Source: Mathlib/Analysis/BoxIntegral/Box/SubboxInduction.lean

Statistics

MetricCount
DefinitionssplitCenterBox, splitCenterBoxEmb
2
Theoremsdisjoint_splitCenterBox, exists_mem_splitCenterBox, iUnion_coe_splitCenterBox, injective_splitCenterBox, mem_splitCenterBox, splitCenterBoxEmb_apply, splitCenterBox_le, subbox_induction_on', upper_sub_lower_splitCenterBox
9
Total11

BoxIntegral.Box

Definitions

NameCategoryTheorems
splitCenterBox πŸ“–CompOp
9 mathmath: splitCenterBox_le, disjoint_splitCenterBox, exists_mem_splitCenterBox, upper_sub_lower_splitCenterBox, mem_splitCenterBox, BoxIntegral.Prepartition.mem_splitCenter, iUnion_coe_splitCenterBox, splitCenterBoxEmb_apply, injective_splitCenterBox
splitCenterBoxEmb πŸ“–CompOp
1 mathmath: splitCenterBoxEmb_apply

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_splitCenterBox πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
toSet
splitCenterBox
β€”disjoint_iff_inf_le
Set.ext
Nat.instAtLeastTwoHAddOfNat
mem_splitCenterBox
mem_coe
exists_mem_splitCenterBox πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
splitCenterBox
β€”splitCenterBox_le
Nat.instAtLeastTwoHAddOfNat
mem_splitCenterBox
iUnion_coe_splitCenterBox πŸ“–mathematicalβ€”Set.iUnion
Set
toSet
splitCenterBox
β€”Set.ext
injective_splitCenterBox πŸ“–mathematicalβ€”Set
BoxIntegral.Box
splitCenterBox
β€”by_contra
Disjoint.ne
Set.Nonempty.ne_empty
nonempty_coe
disjoint_splitCenterBox
mem_splitCenterBox πŸ“–mathematicalβ€”BoxIntegral.Box
instMembershipForallReal
splitCenterBox
Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
lower
upper
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
β€”Nat.instAtLeastTwoHAddOfNat
LT.lt.trans
left_lt_add_div_two
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lower_lt_upper
LE.le.trans
LT.lt.le
add_div_two_lt_right
splitCenterBoxEmb_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Set
BoxIntegral.Box
Function.instFunLikeEmbedding
splitCenterBoxEmb
splitCenterBox
β€”β€”
splitCenterBox_le πŸ“–mathematicalβ€”BoxIntegral.Box
instLE
splitCenterBox
β€”Nat.instAtLeastTwoHAddOfNat
mem_splitCenterBox
subbox_induction_on' πŸ“–β€”Set
Filter
Filter.instMembership
nhdsWithin
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
instLE
Set.instLE
instFunLikeOrderEmbedding
Icc
β€”β€”Nat.instAtLeastTwoHAddOfNat
not_imp_not
Function.iterate_succ_apply'
antitone_nat_of_succ_le
splitCenterBox_le
zero_le
Nat.instCanonicallyOrderedAdd
pow_zero
div_one
upper_sub_lower_splitCenterBox
div_div
pow_succ
Set.mem_iInter
ciSup_mem_iInter_Icc_of_antitone_Icc
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Monotone.comp_antitone
OrderEmbedding.monotone
lower_le_upper
le_iff_Icc
lower_mem_Icc
upper_mem_Icc
tendsto_atTop_ciSup
Pi.supConvergenceClass'
LinearOrder.supConvergenceClass
instOrderTopologyReal
Antitone.comp
antitone_lower
tendsto_pi_nhds
Filter.Tendsto.div_atTop
Real.instIsStrictOrderedRing
tendsto_const_nhds
tendsto_pow_atTop_atTop_of_one_lt
AddGroup.existsAddOfLE
Real.instArchimedean
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_sub_cancel
add_zero
Filter.Tendsto.add
instContinuousAddForallOfIsTopologicalSemiring
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
Filter.Eventually.of_forall
Filter.Eventually.exists
Filter.atTop_neBot
Filter.tendsto_lift'
Filter.Tendsto.Icc
tendstoIxxNhdsWithin
tendstoIccClassNhdsPi
Filter.tendsto_Icc_Icc_Icc
Function.sometimes_spec
upper_sub_lower_splitCenterBox πŸ“–mathematicalβ€”Real
Real.instSub
upper
splitCenterBox
lower
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Set.piecewise_eq_of_mem
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Set.piecewise_eq_of_notMem

---

← Back to Index