Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/BoxIntegral/Partition/Basic.lean

Statistics

MetricCount
DefinitionsPrepartition, IsPartition, biUnion, biUnionIndex, boxes, disjUnion, distortion, filter, iUnion, instInhabited, instLE, instMembershipBox, instOrderBot, instOrderTop, instSemilatticeInf, ofWithBot, partialOrder, restrict, single
19
TheoremsbiUnion, eq_of_boxes_subset, existsUnique, iUnion_eq, iUnion_subset, inf, le_iff, nonempty_boxes, restrict, biUnionIndex_le, biUnionIndex_mem, biUnionIndex_of_mem, biUnion_assoc, biUnion_boxes, biUnion_congr, biUnion_congr_of_le, biUnion_le, biUnion_le_iff, biUnion_top, bot_boxes, card_filter_mem_Icc_le, disjUnion_boxes, disjoint_boxes_of_disjoint_iUnion, disjoint_coe_of_mem, distortion_biUnion, distortion_bot, distortion_disjUnion, distortion_le_iff, distortion_le_of_mem, distortion_of_const, distortion_top, eq_of_boxes_subset_iUnion_superset, eq_of_le, eq_of_le_of_le, eq_of_mem_of_mem, ext, ext_iff, filter_boxes, filter_le, filter_of_true, filter_true, iUnion_biUnion, iUnion_biUnion_partition, iUnion_bot, iUnion_def, iUnion_def', iUnion_disjUnion, iUnion_eq_empty, iUnion_filter_not, iUnion_inf, iUnion_mono, iUnion_ofWithBot, iUnion_restrict, iUnion_single, iUnion_subset, iUnion_top, inf_def, injOn_setOf_mem_Icc_setOf_lower_eq, injective_boxes, isPartitionDisjUnionOfEqDiff, isPartitionTop, isPartition_iff_iUnion_eq, isPartition_single_iff, le_biUnionIndex, le_biUnion_iff, le_def, le_iff_nonempty_imp_le_and_iUnion_subset, le_ofWithBot, le_of_mem, le_of_mem', lower_le_lower, mem_biUnion, mem_biUnionIndex, mem_boxes, mem_disjUnion, mem_filter, mem_iUnion, mem_inf, mem_mk, mem_ofWithBot, mem_restrict, mem_restrict', mem_single, mem_top, monotone_restrict, notMem_bot, ofWithBot_le, ofWithBot_mono, pairwiseDisjoint, restrict_biUnion, restrict_boxes_of_le, restrict_mono, restrict_self, single_boxes, subset_iUnion, sum_biUnion_boxes, sum_disj_union_boxes, sum_fiberwise, sum_ofWithBot, top_boxes, upper_le_upper
101
Total120

BoxIntegral

Definitions

NameCategoryTheorems
Prepartition πŸ“–CompData
69 mathmath: Prepartition.biUnion_le_iff, IntegrationParams.tendsto_embedBox_toFilteriUnion_top, Prepartition.le_ofWithBot, Prepartition.mem_split_iff, Prepartition.top_boxes, HasIntegral.tendsto, Prepartition.IsPartition.compl_eq_bot, Prepartition.injective_boxes, IntegrationParams.eventually_isPartition, Prepartition.IsPartition.existsUnique, TaggedPrepartition.mem_toPrepartition, Prepartition.mem_split_iff', Prepartition.mem_biUnion, Prepartition.isPartitionTop, TaggedPrepartition.mem_mk, Prepartition.iUnion_def, IntegrationParams.hasBasis_toFilteriUnion_top, Prepartition.compl_top, Prepartition.mem_single, Prepartition.mem_restrict', Prepartition.mem_mk, Prepartition.biUnion_top, Prepartition.bot_boxes, Prepartition.mem_filter, Prepartition.iUnion_inf, Prepartition.mem_splitCenter, Prepartition.iUnion_eq_empty, Prepartition.biUnion_le, Prepartition.inf_split, Prepartition.exists_splitMany_inf_eq_filter_of_finite, Prepartition.exists_tagged_le_isHenstock_isSubordinate_iUnion_eq, Prepartition.iUnion_top, Prepartition.distortion_top, Prepartition.iUnion_biUnion, Prepartition.iUnion_bot, Prepartition.IsPartition.le_iff, Prepartition.IsPartition.inf, Prepartition.splitMany_empty, Prepartition.iUnion_biUnionTagged, Prepartition.splitMany_insert, Prepartition.distortion_bot, Prepartition.injOn_setOf_mem_Icc_setOf_lower_eq, Prepartition.splitMany_le_split, Prepartition.monotone_restrict, Prepartition.le_iff_nonempty_imp_le_and_iUnion_subset, integralSum_sub_partitions, Prepartition.mem_boxes, integrable_iff_cauchy, Prepartition.mem_ofWithBot, Prepartition.split_of_notMem_Ioo, Prepartition.toSubordinate_toPrepartition_le, Prepartition.mem_inf, Prepartition.inf_def, Prepartition.inf_splitMany, Prepartition.mem_restrict, Prepartition.le_biUnion_iff, Prepartition.filter_le, Prepartition.IsPartition.exists_splitMany_le, Prepartition.notMem_bot, Prepartition.mem_biUnionTagged, Prepartition.ofWithBot_mono, Prepartition.eventually_splitMany_inf_eq_filter, TaggedPrepartition.infPrepartition_toPrepartition, IntegrationParams.exists_memBaseSet_le_iUnion_eq, Prepartition.ext_iff, Prepartition.mem_top, Prepartition.le_def, Prepartition.mem_disjUnion, Prepartition.mem_iUnion

BoxIntegral.Prepartition

Definitions

NameCategoryTheorems
IsPartition πŸ“–MathDef
7 mathmath: isPartitionDisjUnionOfEqDiff, isPartitionTop, isPartition_iff_iUnion_eq, isPartition_single_iff, isPartitionSplit, isPartition_splitMany, isPartition_splitCenter
biUnion πŸ“–CompOp
17 mathmath: biUnion_le_iff, biUnion_assoc, restrict_biUnion, mem_biUnion, biUnion_congr, biUnion_top, biUnion_le, inf_split, IsPartition.biUnion, iUnion_biUnion, biUnion_boxes, distortion_biUnion, inf_def, inf_splitMany, le_biUnion_iff, iUnion_biUnion_partition, biUnion_congr_of_le
biUnionIndex πŸ“–CompOp
7 mathmath: biUnion_assoc, biUnionIndex_mem, le_biUnionIndex, BoxIntegral.TaggedPrepartition.biUnionPrepartition_tag, biUnionIndex_of_mem, mem_biUnionIndex, biUnionIndex_le
boxes πŸ“–CompOp
39 mathmath: measure_iUnion_toReal, BoxIntegral.TaggedPrepartition.filter_boxes_val, BoxIntegral.unitPartition.mem_prepartition_boxes_iff, top_boxes, card_filter_mem_Icc_le, injective_boxes, filter_boxes, sum_fiberwise, sum_biUnion_boxes, bot_boxes, BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet, distortion_biUnionTagged, BoxIntegral.Integrable.sum_integral_congr, BoxIntegral.integralSum_biUnionTagged, pairwiseDisjoint, sum_disj_union_boxes, BoxIntegral.integralSum_fiberwise, BoxIntegral.TaggedPrepartition.distortion_biUnionPrepartition, biUnion_boxes, BoxIntegral.BoxAdditiveMap.sum_partition_boxes, distortion_biUnion, IsPartition.nonempty_boxes, single_boxes, BoxIntegral.TaggedPrepartition.IsHenstock.card_filter_tag_eq_le, disjUnion_boxes, BoxIntegral.integralSum_sub_partitions, iUnion_def', mem_boxes, BoxIntegral.TaggedPrepartition.disjUnion_boxes, BoxIntegral.TaggedPrepartition.single_boxes_val, BoxIntegral.TaggedPrepartition.unionComplToSubordinate_boxes, disjoint_boxes_of_disjoint_iUnion, BoxIntegral.Integrable.tendsto_integralSum_sum_integral, sum_split_boxes, BoxIntegral.BoxAdditiveMap.sum_partition_boxes', restrict_boxes_of_le, BoxIntegral.BoxAdditiveMap.sum_boxes_congr, BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq, sum_ofWithBot
disjUnion πŸ“–CompOp
5 mathmath: isPartitionDisjUnionOfEqDiff, iUnion_disjUnion, distortion_disjUnion, disjUnion_boxes, mem_disjUnion
distortion πŸ“–CompOp
13 math, 1 bridgemath: BoxIntegral.IntegrationParams.toFilterDistortioniUnion_neBot', distortion_le_of_mem, exists_tagged_le_isHenstock_isSubordinate_iUnion_eq, distortion_top, BoxIntegral.TaggedPrepartition.distortion_biUnionPrepartition, distortion_disjUnion, distortion_biUnion, distortion_of_const, distortion_bot, distortion_le_iff, BoxIntegral.TaggedPrepartition.distortion_unionComplToSubordinate, BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl, distortion_toSubordinate
bridge: BoxIntegral.IntegrationParams.MemBaseSet.exists_compl
filter πŸ“–CompOp
9 mathmath: filter_boxes, sum_fiberwise, mem_filter, exists_splitMany_inf_eq_filter_of_finite, iUnion_filter_not, filter_of_true, filter_true, filter_le, eventually_splitMany_inf_eq_filter
iUnion πŸ“–CompOp
36 math, 1 bridgemath: measure_iUnion_toReal, BoxIntegral.IntegrationParams.toFilter_inf_iUnion_eq, subset_iUnion, exists_iUnion_eq_diff, IsPartition.iUnion_eq, iUnion_def, BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion, iUnion_subset, iUnion_inf, iUnion_eq_empty, exists_splitMany_inf_eq_filter_of_finite, iUnion_filter_not, exists_tagged_le_isHenstock_isSubordinate_iUnion_eq, iUnion_top, iUnion_biUnion, iUnion_bot, iUnion_compl, BoxIntegral.TaggedPrepartition.iUnion_mk, iUnion_mono, le_iff_nonempty_imp_le_and_iUnion_subset, iUnion_def', iUnion_splitMany, iUnion_restrict, isPartition_iff_iUnion_eq, IsPartition.iUnion_subset, BoxIntegral.IntegrationParams.hasBasis_toFilterDistortioniUnion, iUnion_ofWithBot, iUnion_toSubordinate, eventually_splitMany_inf_eq_filter, BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl, BoxIntegral.IntegrationParams.exists_memBaseSet_le_iUnion_eq, iUnion_biUnion_partition, BoxIntegral.TaggedPrepartition.iUnion_toPrepartition, iUnion_split, mem_iUnion, iUnion_single
bridge: BoxIntegral.IntegrationParams.MemBaseSet.exists_compl
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
35 mathmath: biUnion_le_iff, BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top, le_ofWithBot, top_boxes, BoxIntegral.HasIntegral.tendsto, IsPartition.compl_eq_bot, BoxIntegral.IntegrationParams.eventually_isPartition, isPartitionTop, BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion_top, compl_top, biUnion_top, bot_boxes, iUnion_eq_empty, biUnion_le, exists_tagged_le_isHenstock_isSubordinate_iUnion_eq, iUnion_top, distortion_top, iUnion_bot, IsPartition.le_iff, ofWithBot_le, splitMany_empty, distortion_bot, splitMany_le_split, le_iff_nonempty_imp_le_and_iUnion_subset, BoxIntegral.integrable_iff_cauchy, split_of_notMem_Ioo, toSubordinate_toPrepartition_le, le_biUnion_iff, filter_le, IsPartition.exists_splitMany_le, notMem_bot, ofWithBot_mono, BoxIntegral.IntegrationParams.exists_memBaseSet_le_iUnion_eq, mem_top, le_def
instMembershipBox πŸ“–CompOp
26 mathmath: mem_split_iff, IsPartition.existsUnique, BoxIntegral.TaggedPrepartition.mem_toPrepartition, mem_split_iff', mem_biUnion, BoxIntegral.TaggedPrepartition.mem_mk, iUnion_def, mem_single, mem_restrict', mem_mk, mem_filter, mem_splitCenter, iUnion_biUnion, iUnion_biUnionTagged, injOn_setOf_mem_Icc_setOf_lower_eq, mem_boxes, mem_ofWithBot, mem_inf, mem_restrict, notMem_bot, mem_biUnionTagged, ext_iff, mem_top, le_def, mem_disjUnion, mem_iUnion
instOrderBot πŸ“–CompOp
7 mathmath: IsPartition.compl_eq_bot, compl_top, bot_boxes, iUnion_eq_empty, iUnion_bot, distortion_bot, notMem_bot
instOrderTop πŸ“–CompOp
14 mathmath: BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top, top_boxes, BoxIntegral.HasIntegral.tendsto, BoxIntegral.IntegrationParams.eventually_isPartition, isPartitionTop, BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion_top, compl_top, biUnion_top, iUnion_top, distortion_top, splitMany_empty, BoxIntegral.integrable_iff_cauchy, split_of_notMem_Ioo, mem_top
instSemilatticeInf πŸ“–CompOp
11 mathmath: iUnion_inf, inf_split, exists_splitMany_inf_eq_filter_of_finite, IsPartition.inf, splitMany_insert, BoxIntegral.integralSum_sub_partitions, mem_inf, inf_def, inf_splitMany, eventually_splitMany_inf_eq_filter, BoxIntegral.TaggedPrepartition.infPrepartition_toPrepartition
ofWithBot πŸ“–CompOp
6 mathmath: le_ofWithBot, ofWithBot_le, mem_ofWithBot, iUnion_ofWithBot, ofWithBot_mono, sum_ofWithBot
partialOrder πŸ“–CompOp
1 mathmath: monotone_restrict
restrict πŸ“–CompOp
13 mathmath: biUnion_le_iff, restrict_biUnion, mem_restrict', restrict_mono, monotone_restrict, restrict_self, iUnion_restrict, inf_def, mem_restrict, le_biUnion_iff, restrict_boxes_of_le, restrict_split, IsPartition.restrict
single πŸ“–CompOp
7 mathmath: BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top, BoxIntegral.Integrable.to_subbox_aux, mem_single, single_boxes, BoxIntegral.Integrable.tendsto_integralSum_toFilteriUnion_single, isPartition_single_iff, iUnion_single

Theorems

NameKindAssumesProvesValidatesDepends On
biUnionIndex_le πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Box.instLE
biUnionIndex
β€”le_of_mem
biUnionIndex_mem
biUnionIndex.eq_1
le_refl
biUnionIndex_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
biUnion
biUnionIndexβ€”biUnionIndex.eq_1
mem_biUnion
biUnionIndex_of_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
biUnionIndexβ€”mem_biUnion
eq_of_le_of_le
biUnionIndex_mem
le_biUnionIndex
le_of_mem
biUnion_assoc πŸ“–mathematicalβ€”biUnion
biUnionIndex
β€”ext
biUnionIndex_of_mem
biUnion_boxes πŸ“–mathematicalβ€”boxes
biUnion
Finset.biUnion
BoxIntegral.Box
β€”β€”
biUnion_congr πŸ“–mathematicalβ€”biUnionβ€”ext
biUnion_congr_of_le πŸ“–mathematicalβ€”biUnionβ€”biUnion_congr
le_of_mem
biUnion_le πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
biUnion
β€”mem_biUnion
le_of_mem
biUnion_le_iff πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
biUnion
restrict
β€”restrict_biUnion
restrict_mono
mem_biUnion
mem_restrict
LE.le.trans
WithBot.coe_le_coe
Eq.trans_le
inf_le_right
biUnion_top πŸ“–mathematicalβ€”biUnion
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
β€”ext
bot_boxes πŸ“–mathematicalβ€”boxes
Bot.bot
BoxIntegral.Prepartition
OrderBot.toBot
instLE
instOrderBot
Finset
BoxIntegral.Box
Finset.instEmptyCollection
β€”β€”
card_filter_mem_Icc_le πŸ“–mathematicalβ€”Finset.card
BoxIntegral.Box
Finset.filter
Set
Set.instMembership
DFunLike.coe
OrderEmbedding
BoxIntegral.Box.instLE
Set.instLE
instFunLikeOrderEmbedding
BoxIntegral.Box.Icc
boxes
Monoid.toNatPow
Nat.instMonoid
Fintype.card
β€”Fintype.card_set
Finset.card_le_card_of_injOn
Finset.mem_univ
Finset.coe_filter
injOn_setOf_mem_Icc_setOf_lower_eq
disjUnion_boxes πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
boxes
disjUnion
Finset
BoxIntegral.Box
Finset.instUnion
β€”β€”
disjoint_boxes_of_disjoint_iUnion πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
Finset
BoxIntegral.Box
Finset.partialOrder
Finset.instOrderBot
boxes
β€”Finset.disjoint_left
Disjoint.le_bot
Disjoint.mono
subset_iUnion
BoxIntegral.Box.upper_mem
disjoint_coe_of_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
BoxIntegral.Box.toSet
β€”pairwiseDisjoint
distortion_biUnion πŸ“–mathematicalβ€”distortion
biUnion
Finset.sup
NNReal
BoxIntegral.Box
instSemilatticeSupNNReal
NNReal.instOrderBot
boxes
β€”Finset.sup_biUnion
distortion_bot πŸ“–mathematicalβ€”distortion
Bot.bot
BoxIntegral.Prepartition
OrderBot.toBot
instLE
instOrderBot
NNReal
instZeroNNReal
β€”Finset.sup_empty
distortion_disjUnion πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
distortion
disjUnion
NNReal
NNReal.instMax
β€”Finset.sup_union
distortion_le_iff πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
distortion
BoxIntegral.Box.distortion
β€”Finset.sup_le_iff
distortion_le_of_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
BoxIntegral.Box.distortion
distortion
β€”Finset.le_sup
distortion_of_const πŸ“–mathematicalFinset.Nonempty
BoxIntegral.Box
boxes
BoxIntegral.Box.distortion
distortionβ€”Finset.sup_congr
Finset.sup_const
distortion_top πŸ“–mathematicalβ€”distortion
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
BoxIntegral.Box.distortion
β€”Finset.sup_singleton
eq_of_boxes_subset_iUnion_superset πŸ“–β€”Finset
BoxIntegral.Box
Finset.instHasSubset
boxes
Set
Set.instHasSubset
iUnion
β€”β€”le_antisymm
le_rfl
le_iff_nonempty_imp_le_and_iUnion_subset
Eq.le
eq_of_mem_of_mem
eq_of_le πŸ“–β€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.instLE
β€”β€”eq_of_le_of_le
le_rfl
eq_of_le_of_le πŸ“–β€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.instLE
β€”β€”eq_of_mem_of_mem
BoxIntegral.Box.upper_mem
eq_of_mem_of_mem πŸ“–β€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.instMembershipForallReal
β€”β€”by_contra
Disjoint.le_bot
disjoint_coe_of_mem
ext πŸ“–β€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
β€”β€”injective_boxes
Finset.ext
ext_iff πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
β€”ext
filter_boxes πŸ“–mathematicalβ€”boxes
filter
Finset.filter
BoxIntegral.Box
β€”β€”
filter_le πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
filter
β€”mem_filter
le_rfl
filter_of_true πŸ“–mathematicalβ€”filterβ€”ext
filter_true πŸ“–mathematicalβ€”filterβ€”filter_of_true
iUnion_biUnion πŸ“–mathematicalβ€”iUnion
biUnion
Set.iUnion
BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
iUnion_biUnion_partition πŸ“–mathematicalIsPartitioniUnion
biUnion
β€”iUnion_biUnion
Set.iUnion_congr_of_surjective
IsPartition.iUnion_eq
iUnion_bot πŸ“–mathematicalβ€”iUnion
Bot.bot
BoxIntegral.Prepartition
OrderBot.toBot
instLE
instOrderBot
Set
Set.instEmptyCollection
β€”iUnion_eq_empty
iUnion_def πŸ“–mathematicalβ€”iUnion
Set.iUnion
BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.toSet
β€”β€”
iUnion_def' πŸ“–mathematicalβ€”iUnion
Set.iUnion
BoxIntegral.Box
Finset
Finset.instMembership
boxes
BoxIntegral.Box.toSet
β€”β€”
iUnion_disjUnion πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
disjUnion
Set.instUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_or
Set.iUnion_union_distrib
iUnion_eq_empty πŸ“–mathematicalβ€”iUnion
Set
Set.instEmptyCollection
Bot.bot
BoxIntegral.Prepartition
OrderBot.toBot
instLE
instOrderBot
β€”injective_boxes
iUnion_filter_not πŸ“–mathematicalβ€”iUnion
filter
Set
Set.instSDiff
β€”Set.iUnion_congr_Prop
Finset.coe_filter
Set.biUnion_diff_biUnion_eq
Set.PairwiseDisjoint.eq_1
Set.union_eq_left
filter_boxes
pairwiseDisjoint
iUnion_inf πŸ“–mathematicalβ€”iUnion
BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
Set
Set.instInter
β€”iUnion_biUnion
Set.iUnion_congr_Prop
iUnion_restrict
iUnion_mono πŸ“–mathematicalBoxIntegral.Prepartition
instLE
Set
Set.instHasSubset
iUnion
β€”mem_iUnion
iUnion_ofWithBot πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
iUnion
ofWithBot
Set.iUnion
Finset.instMembership
BoxIntegral.Box.withBotToSet
β€”Set.iUnion_congr_Prop
Set.iUnion_comm
Set.iUnion_iUnion_eq_right
iUnion_restrict πŸ“–mathematicalβ€”iUnion
restrict
Set
Set.instInter
BoxIntegral.Box.toSet
β€”iUnion_ofWithBot
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
BoxIntegral.Box.coe_inf
iUnion_single πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
iUnion
single
BoxIntegral.Box.toSet
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
iUnion_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
iUnion
BoxIntegral.Box.toSet
β€”Set.iUnionβ‚‚_subset
le_of_mem'
iUnion_top πŸ“–mathematicalβ€”iUnion
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
BoxIntegral.Box.toSet
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
inf_def πŸ“–mathematicalβ€”BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
biUnion
restrict
β€”β€”
injOn_setOf_mem_Icc_setOf_lower_eq πŸ“–mathematicalβ€”Set.InjOn
BoxIntegral.Box
Set
setOf
Real
BoxIntegral.Box.lower
BoxIntegral.Prepartition
instMembershipBox
Set.instMembership
DFunLike.coe
OrderEmbedding
BoxIntegral.Box.instLE
Set.instLE
instFunLikeOrderEmbedding
BoxIntegral.Box.Icc
β€”LE.le.eq_or_lt
BoxIntegral.Box.lower_lt_upper
Set.Ioc_inter_Ioc
sup_idem
Set.nonempty_Ioc
lt_min
LE.le.lt_of_ne
LT.lt.ne
eq_of_mem_of_mem
injective_boxes πŸ“–mathematicalβ€”BoxIntegral.Prepartition
Finset
BoxIntegral.Box
boxes
β€”β€”
isPartitionDisjUnionOfEqDiff πŸ“–mathematicaliUnion
Set
Set.instSDiff
BoxIntegral.Box.toSet
IsPartition
disjUnion
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
disjoint_sdiff_self_right
BooleanAlgebra.toGeneralizedBooleanAlgebra
Set.instBooleanAlgebra
β€”disjoint_sdiff_self_right
isPartition_iff_iUnion_eq
iUnion_disjUnion
Set.union_diff_self
iUnion_subset
isPartitionTop πŸ“–mathematicalβ€”IsPartition
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
β€”mem_top
isPartition_iff_iUnion_eq πŸ“–mathematicalβ€”IsPartition
iUnion
BoxIntegral.Box.toSet
β€”iUnion_subset
isPartition_single_iff πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
IsPartition
single
β€”iUnion_single
le_biUnionIndex πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
biUnion
BoxIntegral.Box.instLE
biUnionIndex
β€”le_of_mem
mem_biUnionIndex
le_biUnion_iff πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
biUnion
restrict
β€”LE.le.trans
biUnion_le
restrict_biUnion
restrict_mono
mem_restrict
inf_of_le_right
WithBot.coe_le_coe
mem_biUnion
le_def πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
BoxIntegral.Box
instMembershipBox
BoxIntegral.Box.instLE
β€”β€”
le_iff_nonempty_imp_le_and_iUnion_subset πŸ“–mathematicalβ€”BoxIntegral.Prepartition
instLE
BoxIntegral.Box
BoxIntegral.Box.instLE
Set
Set.instHasSubset
iUnion
β€”eq_of_mem_of_mem
iUnion_mono
BoxIntegral.Box.upper_mem
le_ofWithBot πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
Finset.instMembership
BoxIntegral.Prepartition
instLE
ofWithBot
β€”CanLift.prf
WithBot.canLift
ne_bot_of_le_ne_bot
WithBot.coe_ne_bot
mem_ofWithBot
WithBot.coe_le_coe
le_of_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.instLEβ€”le_of_mem'
le_of_mem' πŸ“–mathematicalBoxIntegral.Box
Finset
Finset.instMembership
boxes
BoxIntegral.Box.instLEβ€”β€”
lower_le_lower πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Pi.hasLe
Real
Real.instLE
BoxIntegral.Box.lower
β€”BoxIntegral.Box.antitone_lower
le_of_mem
mem_biUnion πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
biUnion
β€”β€”
mem_biUnionIndex πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
biUnion
biUnionIndexβ€”mem_biUnion
mem_boxes πŸ“–mathematicalβ€”BoxIntegral.Box
Finset
Finset.instMembership
boxes
BoxIntegral.Prepartition
instMembershipBox
β€”β€”
mem_disjUnion πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
disjUnion
β€”Finset.mem_union
mem_filter πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
filter
β€”Finset.mem_filter
mem_iUnion πŸ“–mathematicalβ€”Set
Set.instMembership
iUnion
BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
BoxIntegral.Box.instMembershipForallReal
β€”BoxIntegral.Box.mem_coe
Set.mem_iUnionβ‚‚
mem_inf πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
SemilatticeInf.toMin
instSemilatticeInf
WithBot.some
WithBot
BoxIntegral.Box.WithBot.inf
β€”β€”
mem_mk πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
BoxIntegral.Box.toSet
BoxIntegral.Prepartition
instMembershipBox
Finset.instMembership
β€”β€”
mem_ofWithBot πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
BoxIntegral.Prepartition
instMembershipBox
ofWithBot
Finset.instMembership
β€”Finset.mem_eraseNone
mem_restrict πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
restrict
WithBot.some
WithBot
BoxIntegral.Box.WithBot.inf
β€”β€”
mem_restrict' πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
restrict
BoxIntegral.Box.toSet
Set
Set.instInter
β€”BoxIntegral.Box.coe_inf
mem_single πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
BoxIntegral.Prepartition
instMembershipBox
single
β€”Finset.mem_singleton
mem_top πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Top.top
OrderTop.toTop
instLE
instOrderTop
β€”Finset.mem_singleton
monotone_restrict πŸ“–mathematicalβ€”Monotone
BoxIntegral.Prepartition
PartialOrder.toPreorder
partialOrder
restrict
β€”restrict_mono
notMem_bot πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Bot.bot
OrderBot.toBot
instLE
instOrderBot
β€”Finset.notMem_empty
ofWithBot_le πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
BoxIntegral.Prepartition
instMembershipBox
instLE
ofWithBot
β€”WithBot.coe_ne_bot
ofWithBot_mono πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
Finset.instMembership
BoxIntegral.Prepartition
instLE
ofWithBot
β€”le_ofWithBot
mem_ofWithBot
WithBot.coe_ne_bot
pairwiseDisjoint πŸ“–mathematicalβ€”Set.Pairwise
BoxIntegral.Box
SetLike.coe
Finset
Finset.instSetLike
boxes
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
BoxIntegral.Box.toSet
β€”β€”
restrict_biUnion πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
restrict
biUnion
β€”eq_of_boxes_subset_iUnion_superset
mem_restrict
mem_biUnion
inf_of_le_right
WithBot.coe_le_coe
le_of_mem
iUnion_restrict
iUnion_biUnion
eq_of_mem_of_mem
iUnion_subset
restrict_boxes_of_le πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
boxes
restrict
β€”Finset.eraseNone_eq_biUnion
Finset.image_biUnion
Finset.biUnion_congr
inf_of_le_right
WithBot.coe_le_coe
LE.le.trans
le_of_mem
WithBot.some_eq_coe
Option.toFinset_some
Finset.biUnion_singleton_eq_self
restrict_mono πŸ“–mathematicalBoxIntegral.Prepartition
instLE
restrictβ€”ofWithBot_mono
Finset.mem_image
Finset.mem_image_of_mem
inf_le_inf_left
WithBot.coe_le_coe
restrict_self πŸ“–mathematicalβ€”restrictβ€”injective_boxes
restrict_boxes_of_le
le_rfl
single_boxes πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
boxes
single
Finset
Finset.instSingleton
β€”β€”
subset_iUnion πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Set
Set.instHasSubset
BoxIntegral.Box.toSet
iUnion
β€”Set.subset_biUnion_of_mem
sum_biUnion_boxes πŸ“–mathematicalβ€”Finset.sum
BoxIntegral.Box
Finset.biUnion
boxes
β€”Finset.sum_biUnion
Finset.disjoint_left
eq_of_le_of_le
le_of_mem
sum_disj_union_boxes πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
iUnion
Finset.sum
BoxIntegral.Box
Finset
Finset.instUnion
boxes
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Finset.sum_union
disjoint_boxes_of_disjoint_iUnion
sum_fiberwise πŸ“–mathematicalβ€”Finset.sum
Finset.image
BoxIntegral.Box
boxes
filter
β€”Finset.sum_congr
Finset.sum_fiberwise_of_maps_to
Finset.mem_image_of_mem
sum_ofWithBot πŸ“–mathematicalWithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
BoxIntegral.Box.instPartialOrder
WithBot.some
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
WithBot.instPartialOrder
WithBot.instOrderBot
Finset.sum
boxes
ofWithBot
Option.elim'
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_eraseNone
top_boxes πŸ“–mathematicalβ€”boxes
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
BoxIntegral.Box
Finset
Finset.instSingleton
β€”β€”
upper_le_upper πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
Pi.hasLe
Real
Real.instLE
BoxIntegral.Box.upper
β€”BoxIntegral.Box.monotone_upper
le_of_mem

BoxIntegral.Prepartition.IsPartition

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition.biUnionβ€”BoxIntegral.Prepartition.mem_biUnion
eq_of_boxes_subset πŸ“–β€”BoxIntegral.Prepartition.IsPartition
Finset
BoxIntegral.Box
Finset.instHasSubset
BoxIntegral.Prepartition.boxes
β€”β€”BoxIntegral.Prepartition.eq_of_boxes_subset_iUnion_superset
iUnion_subset
existsUnique πŸ“–mathematicalBoxIntegral.Prepartition.IsPartition
BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
ExistsUnique
BoxIntegral.Prepartition
BoxIntegral.Prepartition.instMembershipBox
β€”ExistsUnique.intro
BoxIntegral.Prepartition.eq_of_mem_of_mem
iUnion_eq πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition.iUnion
BoxIntegral.Box.toSet
β€”BoxIntegral.Prepartition.isPartition_iff_iUnion_eq
iUnion_subset πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionSet
Set.instHasSubset
BoxIntegral.Prepartition.iUnion
β€”BoxIntegral.Prepartition.iUnion_subset
iUnion_eq
inf πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition
SemilatticeInf.toMin
BoxIntegral.Prepartition.instSemilatticeInf
β€”BoxIntegral.Prepartition.isPartition_iff_iUnion_eq
BoxIntegral.Prepartition.iUnion_inf
iUnion_eq
Set.inter_self
le_iff πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition
BoxIntegral.Prepartition.instLE
BoxIntegral.Box
BoxIntegral.Box.instLE
β€”BoxIntegral.Prepartition.le_iff_nonempty_imp_le_and_iUnion_subset
iUnion_subset
nonempty_boxes πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionFinset.Nonempty
BoxIntegral.Box
BoxIntegral.Prepartition.boxes
β€”BoxIntegral.Box.upper_mem
restrict πŸ“–mathematicalBoxIntegral.Prepartition.IsPartition
BoxIntegral.Box
BoxIntegral.Box.instLE
BoxIntegral.Prepartition.restrictβ€”BoxIntegral.Prepartition.isPartition_iff_iUnion_eq
BoxIntegral.Prepartition.iUnion_restrict
iUnion_eq

---

← Back to Index