Documentation Verification Report

Split

πŸ“ Source: Mathlib/Analysis/BoxIntegral/Partition/Split.lean

Statistics

MetricCount
DefinitionssplitLower, splitUpper, compl, split, splitMany
5
Theoremscoe_splitLower, coe_splitUpper, disjoint_splitLower_splitUpper, splitLower_def, splitLower_eq_bot, splitLower_eq_self, splitLower_le, splitLower_ne_splitUpper, splitUpper_def, splitUpper_eq_bot, splitUpper_eq_self, splitUpper_le, compl_eq_bot, exists_splitMany_le, coe_eq_of_mem_split_of_lt_mem, coe_eq_of_mem_split_of_mem_le, compl_congr, compl_top, eventually_not_disjoint_imp_le_of_mem_splitMany, eventually_splitMany_inf_eq_filter, exists_iUnion_eq_diff, exists_splitMany_inf_eq_filter_of_finite, iUnion_compl, iUnion_split, iUnion_splitMany, inf_split, inf_splitMany, isPartitionSplit, isPartition_splitMany, mem_split_iff, mem_split_iff', not_disjoint_imp_le_of_subset_of_mem_splitMany, restrict_split, splitMany_empty, splitMany_insert, splitMany_le_split, split_of_notMem_Ioo, sum_split_boxes
38
Total43

BoxIntegral.Box

Definitions

NameCategoryTheorems
splitLower πŸ“–CompOp
9 mathmath: BoxIntegral.BoxAdditiveMap.map_split_add, splitLower_def, BoxIntegral.Prepartition.mem_split_iff, splitLower_le, splitLower_eq_bot, coe_splitLower, disjoint_splitLower_splitUpper, splitLower_eq_self, BoxIntegral.Prepartition.sum_split_boxes
splitUpper πŸ“–CompOp
9 mathmath: BoxIntegral.BoxAdditiveMap.map_split_add, splitUpper_eq_bot, BoxIntegral.Prepartition.mem_split_iff, splitUpper_le, splitUpper_def, splitUpper_eq_self, disjoint_splitLower_splitUpper, BoxIntegral.Prepartition.sum_split_boxes, coe_splitUpper

Theorems

NameKindAssumesProvesValidatesDepends On
coe_splitLower πŸ“–mathematicalβ€”withBotToSet
splitLower
Set
Set.instInter
toSet
setOf
Real
Real.instLE
β€”splitLower.eq_1
coe_mk'
Set.ext
and_forall_ne
coe_splitUpper πŸ“–mathematicalβ€”withBotToSet
splitUpper
Set
Set.instInter
toSet
setOf
Real
Real.instLT
β€”splitUpper.eq_1
coe_mk'
Set.ext
Function.forall_update_iff
and_forall_ne
disjoint_splitLower_splitUpper πŸ“–mathematicalβ€”Disjoint
WithBot
BoxIntegral.Box
WithBot.instPartialOrder
instPartialOrder
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
splitLower
splitUpper
β€”disjoint_withBotCoe
coe_splitLower
coe_splitUpper
Disjoint.inf_right'
Disjoint.inf_left'
Set.disjoint_left
not_lt_of_ge
splitLower_def πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
lower
upper
Real.instLT
Function.forall_update_iff
Preorder.toLT
lower_lt_upper
splitLower
WithBot.some
BoxIntegral.Box
Function.update
β€”min_eq_left
LT.lt.le
splitLower_eq_bot πŸ“–mathematicalβ€”splitLower
Bot.bot
WithBot
BoxIntegral.Box
WithBot.bot
Real
Real.instLE
lower
β€”splitLower.eq_1
mk'_eq_bot
Function.exists_update_iff
LT.lt.not_ge
lower_lt_upper
splitLower_eq_self πŸ“–mathematicalβ€”splitLower
WithBot.some
BoxIntegral.Box
Real
Real.instLE
upper
β€”β€”
splitLower_le πŸ“–mathematicalβ€”WithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
instPartialOrder
splitLower
WithBot.some
β€”withBotCoe_subset_iff
coe_splitLower
splitLower_ne_splitUpper πŸ“–β€”β€”β€”β€”le_or_gt
splitUpper_eq_self
splitLower_eq_bot
WithBot.bot_ne_coe
Disjoint.ne
not_le
disjoint_splitLower_splitUpper
splitUpper_def πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
lower
upper
Real.instLT
Function.forall_update_iff
Preorder.toLT
lower_lt_upper
splitUpper
WithBot.some
BoxIntegral.Box
Function.update
β€”max_eq_left
LT.lt.le
splitUpper_eq_bot πŸ“–mathematicalβ€”splitUpper
Bot.bot
WithBot
BoxIntegral.Box
WithBot.bot
Real
Real.instLE
upper
β€”splitUpper.eq_1
mk'_eq_bot
Function.exists_update_iff
LT.lt.not_ge
lower_lt_upper
splitUpper_eq_self πŸ“–mathematicalβ€”splitUpper
WithBot.some
BoxIntegral.Box
Real
Real.instLE
lower
β€”β€”
splitUpper_le πŸ“–mathematicalβ€”WithBot
BoxIntegral.Box
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
instPartialOrder
splitUpper
WithBot.some
β€”withBotCoe_subset_iff
coe_splitUpper

BoxIntegral.Prepartition

Definitions

NameCategoryTheorems
compl πŸ“–CompOp
5 mathmath: BoxIntegral.IntegrationParams.toFilterDistortioniUnion_neBot', compl_congr, IsPartition.compl_eq_bot, compl_top, iUnion_compl
split πŸ“–CompOp
10 mathmath: mem_split_iff, mem_split_iff', inf_split, splitMany_insert, splitMany_le_split, split_of_notMem_Ioo, sum_split_boxes, restrict_split, isPartitionSplit, iUnion_split
splitMany πŸ“–CompOp
9 mathmath: exists_splitMany_inf_eq_filter_of_finite, splitMany_empty, splitMany_insert, splitMany_le_split, iUnion_splitMany, inf_splitMany, IsPartition.exists_splitMany_le, eventually_splitMany_inf_eq_filter, isPartition_splitMany

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_of_mem_split_of_lt_mem πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
split
BoxIntegral.Box.instMembershipForallReal
Real
Real.instLT
BoxIntegral.Box.toSet
Set
Set.instInter
setOf
β€”mem_split_iff'
LT.lt.not_ge
BoxIntegral.Box.mem_coe
coe_eq_of_mem_split_of_mem_le πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
split
BoxIntegral.Box.instMembershipForallReal
Real
Real.instLE
BoxIntegral.Box.toSet
Set
Set.instInter
setOf
β€”mem_split_iff'
LE.le.not_gt
BoxIntegral.Box.mem_coe
compl_congr πŸ“–mathematicaliUnioncomplβ€”exists_iUnion_eq_diff
compl_top πŸ“–mathematicalβ€”compl
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
Bot.bot
OrderBot.toBot
instOrderBot
β€”IsPartition.compl_eq_bot
isPartitionTop
eventually_not_disjoint_imp_le_of_mem_splitMany πŸ“–mathematicalβ€”Filter.Eventually
Finset
Real
Filter.atTop
PartialOrder.toPreorder
Finset.partialOrder
β€”nonempty_fintype
Filter.eventually_atTop
Finset.isDirected_le
not_disjoint_imp_le_of_subset_of_mem_splitMany
Finset.mem_biUnion
Finset.mem_univ
eventually_splitMany_inf_eq_filter πŸ“–mathematicalβ€”Filter.Eventually
Finset
Real
BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
splitMany
filter
Set
Set.instHasSubset
BoxIntegral.Box.toSet
iUnion
Filter.atTop
PartialOrder.toPreorder
Finset.partialOrder
β€”Filter.Eventually.mono
eventually_not_disjoint_imp_le_of_mem_splitMany
le_antisymm
biUnion_le_iff
ofWithBot_mono
Set.Subset.trans
disjoint_iff
subset_iUnion
le_rfl
le_inf
Set.mem_iUnionβ‚‚
mem_filter
BoxIntegral.Box.upper_mem
BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter
filter_le
exists_iUnion_eq_diff πŸ“–mathematicalβ€”iUnion
Set
Set.instSDiff
BoxIntegral.Box.toSet
β€”Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
eventually_splitMany_inf_eq_filter
iUnion_filter_not
iUnion_splitMany
iUnion_inf
Set.diff_inter_self_eq_diff
exists_splitMany_inf_eq_filter_of_finite πŸ“–mathematicalβ€”BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
splitMany
filter
Set
Set.instHasSubset
BoxIntegral.Box.toSet
iUnion
β€”Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
Set.Finite.eventually_all
eventually_splitMany_inf_eq_filter
iUnion_compl πŸ“–mathematicalβ€”iUnion
compl
Set
Set.instSDiff
BoxIntegral.Box.toSet
β€”exists_iUnion_eq_diff
iUnion_split πŸ“–mathematicalβ€”iUnion
split
BoxIntegral.Box.toSet
β€”iUnion_ofWithBot
Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_or_left
BoxIntegral.Box.coe_splitLower
Set.iUnion_iUnion_eq_left
BoxIntegral.Box.coe_splitUpper
Set.inter_univ
iUnion_splitMany πŸ“–mathematicalβ€”iUnion
splitMany
BoxIntegral.Box.toSet
β€”IsPartition.iUnion_eq
isPartition_splitMany
inf_split πŸ“–mathematicalβ€”BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
split
biUnion
β€”biUnion_congr_of_le
restrict_split
inf_splitMany πŸ“–mathematicalβ€”BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
splitMany
biUnion
β€”Finset.induction_on
inf_of_le_left
biUnion_congr
biUnion_top
splitMany_insert
inf_split
biUnion_assoc
isPartitionSplit πŸ“–mathematicalβ€”IsPartition
split
β€”isPartition_iff_iUnion_eq
iUnion_split
isPartition_splitMany πŸ“–mathematicalβ€”IsPartition
splitMany
β€”Finset.induction_on
splitMany_insert
inf_split
IsPartition.biUnion
isPartitionSplit
mem_split_iff πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
split
WithBot.some
BoxIntegral.Box.splitLower
BoxIntegral.Box.splitUpper
β€”β€”
mem_split_iff' πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
split
BoxIntegral.Box.toSet
Set
Set.instInter
setOf
Real
Real.instLE
Real.instLT
β€”BoxIntegral.Box.coe_splitLower
BoxIntegral.Box.coe_splitUpper
not_disjoint_imp_le_of_subset_of_mem_splitMany πŸ“–mathematicalFinset
Real
Finset.instHasSubset
Finset.instInsert
Real.decidableEq
BoxIntegral.Box.lower
Finset.instSingleton
BoxIntegral.Box.upper
BoxIntegral.Box
BoxIntegral.Prepartition
instMembershipBox
splitMany
Disjoint
WithBot
WithBot.instPartialOrder
BoxIntegral.Box.instPartialOrder
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
WithBot.some
BoxIntegral.Box.instLEβ€”BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter
splitMany_le_split
coe_eq_of_mem_split_of_lt_mem
BoxIntegral.Box.coe_subset_coe
coe_eq_of_mem_split_of_mem_le
restrict_split πŸ“–mathematicalBoxIntegral.Box
BoxIntegral.Box.instLE
restrict
split
β€”IsPartition.eq_of_boxes_subset
IsPartition.restrict
isPartitionSplit
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Set.inter_left_comm
splitMany_empty πŸ“–mathematicalβ€”splitMany
Finset
Real
Finset.instEmptyCollection
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
β€”β€”
splitMany_insert πŸ“–mathematicalβ€”splitMany
Real
Finset
Finset.instInsert
Real.decidableEq
BoxIntegral.Prepartition
SemilatticeInf.toMin
instSemilatticeInf
split
β€”splitMany.eq_1
Finset.inf_insert
inf_comm
splitMany_le_split πŸ“–mathematicalReal
Finset
Finset.instMembership
BoxIntegral.Prepartition
instLE
splitMany
split
β€”Finset.inf_le
split_of_notMem_Ioo πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
BoxIntegral.Box.lower
BoxIntegral.Box.upper
split
Top.top
BoxIntegral.Prepartition
OrderTop.toTop
instLE
instOrderTop
β€”IsPartition.eq_of_boxes_subset
isPartitionTop
mem_boxes
mem_split_iff
not_lt
not_and_or
Set.mem_Ioo
BoxIntegral.Box.splitUpper_eq_self
BoxIntegral.Box.splitLower_eq_self
mem_top
sum_split_boxes πŸ“–mathematicalβ€”Finset.sum
BoxIntegral.Box
boxes
split
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Option.elim'
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
BoxIntegral.Box.splitLower
BoxIntegral.Box.splitUpper
β€”split.eq_1
sum_ofWithBot
Finset.sum_pair
BoxIntegral.Box.splitLower_ne_splitUpper

BoxIntegral.Prepartition.IsPartition

Theorems

NameKindAssumesProvesValidatesDepends On
compl_eq_bot πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition.compl
Bot.bot
BoxIntegral.Prepartition
OrderBot.toBot
BoxIntegral.Prepartition.instLE
BoxIntegral.Prepartition.instOrderBot
β€”BoxIntegral.Prepartition.iUnion_eq_empty
BoxIntegral.Prepartition.iUnion_compl
iUnion_eq
Set.diff_self
exists_splitMany_le πŸ“–mathematicalBoxIntegral.Prepartition.IsPartitionBoxIntegral.Prepartition
BoxIntegral.Prepartition.instLE
BoxIntegral.Prepartition.splitMany
β€”inf_eq_right
BoxIntegral.Prepartition.filter_of_true
BoxIntegral.Prepartition.le_of_mem
iUnion_eq
Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
BoxIntegral.Prepartition.eventually_splitMany_inf_eq_filter

---

← Back to Index