Documentation Verification Report

UnitPartition

πŸ“ Source: Mathlib/Analysis/BoxIntegral/UnitPartition.lean

Statistics

MetricCount
DefinitionshasIntegralVertices, admissibleIndex, box, index, prepartition, tag
6
Theoremsle_hasIntegralVertices_of_isBounded, upper_sub_lower, box_index_tag_eq_self, box_injective, box_lower, box_upper, diam_boxIcc, disjoint, eq_of_mem_smul_span_of_index_eq_index, index_apply, index_tag, integralSum_eq_tsum_div, mem_admissibleIndex_iff, mem_admissibleIndex_of_mem_box, mem_box_iff, mem_box_iff', mem_box_iff_index, mem_prepartition_boxes_iff, mem_prepartition_iff, mem_smul_span_iff, prepartition_isHenstock, prepartition_isPartition, prepartition_isSubordinate, prepartition_tag, setFinite_index, tag_apply, tag_index_eq_self_of_mem_smul_span, tag_injective, tag_mem, tag_mem_smul_span, volume_box, tendsto_card_div_pow_atTop_volume, tendsto_card_div_pow_atTop_volume', tendsto_tsum_div_pow_atTop_integral
34
Total40

BoxIntegral

Definitions

NameCategoryTheorems
hasIntegralVertices πŸ“–MathDef
1 mathmath: le_hasIntegralVertices_of_isBounded

Theorems

NameKindAssumesProvesValidatesDepends On
le_hasIntegralVertices_of_isBounded πŸ“–mathematicalBornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
hasIntegralVertices
Set
Set.instLE
Box.toSet
β€”Bornology.IsBounded.subset_ball_lt
Real.instIsStrictOrderedRing
Nat.ceil_pos
Real.instIsOrderedAddMonoid
Real.instIsOrderedRing
Real.instNontrivial
Int.cast_neg_natCast
le_trans
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
pi_norm_lt_iff
Nat.cast_pos
le_of_lt
Metric.ball_subset_ball
Nat.le_ceil

BoxIntegral.unitPartition

Definitions

NameCategoryTheorems
admissibleIndex πŸ“–CompOp
4 mathmath: mem_prepartition_boxes_iff, mem_admissibleIndex_iff, mem_admissibleIndex_of_mem_box, mem_prepartition_iff
box πŸ“–CompOp
17 mathmath: mem_box_iff', prepartition_tag, box_upper, mem_prepartition_boxes_iff, mem_admissibleIndex_iff, tag_mem, box_injective, mem_box_iff, box_index_tag_eq_self, disjoint, box_lower, setFinite_index, mem_prepartition_iff, mem_box_iff_index, volume_box, box.upper_sub_lower, diam_boxIcc
index πŸ“–CompOp
6 mathmath: index_tag, mem_admissibleIndex_of_mem_box, box_index_tag_eq_self, index_apply, mem_box_iff_index, tag_index_eq_self_of_mem_smul_span
prepartition πŸ“–CompOp
7 mathmath: prepartition_tag, mem_prepartition_boxes_iff, prepartition_isSubordinate, integralSum_eq_tsum_div, prepartition_isPartition, mem_prepartition_iff, prepartition_isHenstock
tag πŸ“–CompOp
7 mathmath: tag_injective, prepartition_tag, tag_mem, index_tag, tag_apply, tag_index_eq_self_of_mem_smul_span, tag_mem_smul_span

Theorems

NameKindAssumesProvesValidatesDepends On
box_index_tag_eq_self πŸ“–mathematicalBoxIntegral.Box
Finset
Finset.instMembership
BoxIntegral.Prepartition.boxes
BoxIntegral.TaggedPrepartition.toPrepartition
prepartition
box
index
BoxIntegral.TaggedPrepartition.tag
β€”mem_prepartition_boxes_iff
prepartition_tag
index_tag
box_injective πŸ“–mathematicalβ€”BoxIntegral.Box
box
β€”Mathlib.Tactic.Contrapose.contrapose₁
BoxIntegral.Box.ne_of_disjoint_coe
disjoint
box_lower πŸ“–mathematicalβ€”BoxIntegral.Box.lower
box
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
β€”β€”
box_upper πŸ“–mathematicalβ€”BoxIntegral.Box.upper
box
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Real.instIntCast
Real.instOne
Real.instNatCast
β€”β€”
diam_boxIcc πŸ“–mathematicalβ€”Real
Real.instLE
Metric.diam
pseudoMetricSpacePi
Real.pseudoMetricSpace
DFunLike.coe
OrderEmbedding
BoxIntegral.Box
Set
BoxIntegral.Box.instLE
Set.instLE
instFunLikeOrderEmbedding
BoxIntegral.Box.Icc
box
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
β€”BoxIntegral.Box.Icc_eq_pi
ENNReal.toReal_le_of_le_ofReal
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Metric.ediam_pi_le_of_le
Real.ediam_Icc
box.upper_sub_lower
disjoint πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
BoxIntegral.Box.toSet
box
β€”not_iff_comm
Set.not_disjoint_iff
mem_box_iff_index
tag_mem
eq_of_mem_smul_span_of_index_eq_index πŸ“–β€”Submodule
Int.instSemiring
Pi.addCommMonoid
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Pi.semiring
Real.semiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Submodule.pointwiseDistribMulAction
Pi.distribMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
AddGroup.int_smulCommClass'
Pi.addGroup
Real.instAddGroup
Pi.distribSMul
Real.instAddMonoid
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.instInv
Real.instNatCast
Submodule.span
Set.range
DFunLike.coe
Module.Basis
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
index
β€”β€”AddGroup.int_smulCommClass'
tag_index_eq_self_of_mem_smul_span
index_apply πŸ“–mathematicalβ€”index
Int.ceil
Real
Real.instRing
Real.linearOrder
Real.instFloorRing
Real.instMul
Real.instNatCast
β€”β€”
index_tag πŸ“–mathematicalβ€”index
tag
β€”mem_box_iff_index
tag_mem
integralSum_eq_tsum_div πŸ“–mathematicalBoxIntegral.hasIntegralVertices
Set
Set.instLE
BoxIntegral.Box.toSet
BoxIntegral.integralSum
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Set.indicator
Real.instZero
BoxIntegral.BoxAdditiveMap.toSMul
Top.top
WithTop
BoxIntegral.Box
WithTop.top
MeasureTheory.Measure.toBoxAdditive
Finite.of_fintype
MeasureTheory.MeasureSpace.volume
MeasureTheory.MeasureSpace.pi
Real.measureSpace
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.instAddGroup
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.measurableSpace
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
prepartition
DivInvMonoid.toDiv
Real.instDivInvMonoid
tsum
Set.Elem
Set.instInter
Set.smulSet
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Real.instInv
Real.instNatCast
SetLike.coe
Submodule
Int.instSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
Submodule.span
Set.range
DFunLike.coe
Module.Basis
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
Set.instMembership
SummationFilter.unconditional
Monoid.toNatPow
Real.instMonoid
Fintype.card
β€”Finite.of_fintype
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
AddGroup.int_smulCommClass'
Submodule.coe_pointwise_smul
Ne.isUnit
inv_ne_zero
NeZero.charZero
RCLike.charZero_rclike
ZSpan.smul
ZSpan.setFinite_inter
pi_properSpace
Bornology.IsBounded.subset
BoxIntegral.Box.isBounded
tsum_fintype
SummationFilter.instLeAtTopUnconditional
Finset.sum_set_coe
Finset.sum_div
Finset.sum_congr
Set.indicator_apply
MulZeroClass.mul_zero
Finset.sum_ite
Finset.sum_const_zero
add_zero
Finset.sum_bij
Finset.mem_filter
mem_prepartition_boxes_iff
mem_admissibleIndex_of_mem_box
Set.mem_toFinset
prepartition_tag
tag_index_eq_self_of_mem_smul_span
eq_of_mem_smul_span_of_index_eq_index
box_injective
box_index_tag_eq_self
tag_mem_smul_span
MeasureTheory.measureReal_def
volume_box
ENNReal.toReal_div
ENNReal.toReal_one
ENNReal.toReal_pow
ENNReal.toReal_natCast
mul_comm_div
one_mul
mem_admissibleIndex_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
admissibleIndex
BoxIntegral.Box
BoxIntegral.Box.instLE
box
β€”admissibleIndex.eq_1
Set.Finite.mem_toFinset
Set.mem_setOf_eq
BoxIntegral.Box.coe_subset_coe
mem_admissibleIndex_of_mem_box πŸ“–mathematicalBoxIntegral.hasIntegralVertices
BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
Finset
Finset.instMembership
admissibleIndex
index
β€”Int.cast_sub
Int.cast_one
mem_box_iff πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
box
Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
Real.instLE
Real.instAdd
Real.instOne
β€”β€”
mem_box_iff' πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
box
Real
Real.instLT
Real.instIntCast
Real.instMul
Real.instNatCast
Real.instLE
Real.instAdd
Real.instOne
β€”Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_lt_iffβ‚€'
mem_box_iff_index πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
box
index
β€”Int.cast_add
Int.cast_one
add_sub_cancel_right
mem_prepartition_boxes_iff πŸ“–mathematicalβ€”BoxIntegral.Box
Finset
Finset.instMembership
BoxIntegral.Prepartition.boxes
BoxIntegral.TaggedPrepartition.toPrepartition
prepartition
admissibleIndex
box
β€”mem_prepartition_iff
mem_prepartition_iff πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.TaggedPrepartition
BoxIntegral.TaggedPrepartition.instMembershipBox
prepartition
Finset
Finset.instMembership
admissibleIndex
box
β€”BoxIntegral.Box.exists_mem
prepartition.eq_1
Finset.mem_image
mem_smul_span_iff πŸ“–mathematicalβ€”Submodule
Int.instSemiring
Pi.addCommMonoid
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Pi.semiring
Real.semiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Submodule.pointwiseDistribMulAction
Pi.distribMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
AddGroup.int_smulCommClass'
Pi.addGroup
Real.instAddGroup
Pi.distribSMul
Real.instAddMonoid
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.instInv
Real.instNatCast
Submodule.span
Set.range
DFunLike.coe
Module.Basis
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
Set
Set.instMembership
RingHom
CommSemiring.toSemiring
Int.instCommSemiring
RingHom.instFunLike
algebraMap
Ring.toIntAlgebra
Real.instRing
Real.instMul
β€”AddGroup.int_smulCommClass'
Ne.isUnit
inv_ne_zero
NeZero.charZero
RCLike.charZero_rclike
ZSpan.smul
RingHomInvPair.ids
Module.Basis.mem_span_iff_repr_mem
Int.instIsDomain
Real.instNontrivial
AddCommGroup.intIsScalarTower
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFreeOfAddLeftStrictMonoOfAddRightStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Module.Basis.repr_isUnitSMul
Pi.basisFun_repr
Units.val_inv_eq_inv_val
inv_inv
prepartition_isHenstock πŸ“–mathematicalβ€”BoxIntegral.TaggedPrepartition.IsHenstock
prepartition
β€”mem_prepartition_iff
prepartition_tag
BoxIntegral.Box.coe_subset_Icc
tag_mem
prepartition_isPartition πŸ“–mathematicalBoxIntegral.hasIntegralVerticesBoxIntegral.TaggedPrepartition.IsPartition
prepartition
β€”BoxIntegral.TaggedPrepartition.mem_toPrepartition
mem_prepartition_iff
mem_admissibleIndex_of_mem_box
mem_box_iff_index
prepartition_isSubordinate πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
BoxIntegral.TaggedPrepartition.IsSubordinate
prepartition
Set
Set.instMembership
Set.Ioi
Real.instPreorder
β€”mem_prepartition_iff
le_trans
Metric.dist_le_diam_of_mem
BoxIntegral.Box.isBounded_Icc
Finite.of_fintype
prepartition_tag
BoxIntegral.Box.coe_subset_Icc
tag_mem
diam_boxIcc
prepartition_tag πŸ“–mathematicalFinset
Finset.instMembership
admissibleIndex
BoxIntegral.TaggedPrepartition.tag
prepartition
box
tag
β€”BoxIntegral.Box.exists_mem
tag_injective
box_injective
setFinite_index πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasurableSpace.pi
Real
Real.measurableSpace
MeasureTheory.MeasureSpace.volume
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set.Finite
setOf
Set
Set.instHasSubset
BoxIntegral.Box.toSet
box
β€”Set.Finite.subset
MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnionβ‚€
one_div
MeasureTheory.NullMeasurableSet.inter
MeasurableSet.nullMeasurableSet
BoxIntegral.Box.measurableSet_coe
Finite.to_countable
Finite.of_fintype
Disjoint.aedisjoint
Disjoint.inter_left
Disjoint.inter_right
disjoint
lt_top_iff_ne_top
MeasureTheory.measure_lt_top_of_subset
Set.mem_setOf
Set.inter_eq_self_of_subset_left
volume_box
le_refl
tag_apply πŸ“–mathematicalβ€”tag
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Real.instIntCast
Real.instOne
Real.instNatCast
β€”β€”
tag_index_eq_self_of_mem_smul_span πŸ“–mathematicalSubmodule
Int.instSemiring
Pi.addCommMonoid
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Pi.semiring
Real.semiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Submodule.pointwiseDistribMulAction
Pi.distribMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
AddGroup.int_smulCommClass'
Pi.addGroup
Real.instAddGroup
Pi.distribSMul
Real.instAddMonoid
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.instInv
Real.instNatCast
Submodule.span
Set.range
DFunLike.coe
Module.Basis
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
tag
index
β€”AddGroup.int_smulCommClass'
mem_smul_span_iff
tag_apply
index_apply
Int.cast_sub
Int.cast_one
sub_add_cancel
Int.ceil_intCast
Real.instIsStrictOrderedRing
div_eq_iff
NeZero.charZero
RCLike.charZero_rclike
mul_comm
tag_injective πŸ“–mathematicalβ€”tagβ€”RCLike.charZero_rclike
AddRightCancelSemigroup.toIsRightCancelAdd
div_left_inj'
Nat.cast_ne_zero
tag_mem πŸ“–mathematicalβ€”BoxIntegral.Box
BoxIntegral.Box.instMembershipForallReal
box
tag
β€”mem_box_iff
tag.eq_1
add_div
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
le_rfl
tag_mem_smul_span πŸ“–mathematicalβ€”Submodule
Int.instSemiring
Pi.addCommMonoid
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Pi.semiring
Real.semiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Submodule.pointwiseDistribMulAction
Pi.distribMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
AddGroup.int_smulCommClass'
Pi.addGroup
Real.instAddGroup
Pi.distribSMul
Real.instAddMonoid
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.instInv
Real.instNatCast
Submodule.span
Set.range
DFunLike.coe
Module.Basis
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
tag
β€”AddGroup.int_smulCommClass'
mem_smul_span_iff
tag_apply
div_eq_inv_mul
mul_assoc
mul_inv_cancel_of_invertible
RCLike.charZero_rclike
one_mul
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eq_intCast
volume_box πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
BoxIntegral.Box.toSet
box
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toNatCast
Fintype.card
β€”BoxIntegral.Box.coe_eq_pi
MeasureTheory.Measure.pi_pi
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Finset.prod_congr
Real.volume_Ioc
box.upper_sub_lower
Finset.prod_const
ENNReal.ofReal_div_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
ENNReal.ofReal_one
ENNReal.ofReal_natCast
one_div
ENNReal.inv_pow

BoxIntegral.unitPartition.box

Theorems

NameKindAssumesProvesValidatesDepends On
upper_sub_lower πŸ“–mathematicalβ€”Real
Real.instSub
BoxIntegral.Box.upper
BoxIntegral.unitPartition.box
BoxIntegral.Box.lower
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
β€”add_div
add_sub_cancel_left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_card_div_pow_atTop_volume πŸ“–mathematicalBornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
MeasurableSet
MeasurableSpace.pi
Real.measurableSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instZeroENNReal
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Nat.card
Set.Elem
Set.instInter
Set.smulSet
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Real.instInv
SetLike.coe
Submodule
Int.instSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
Submodule.span
Set.range
Module.Basis
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
Finite.of_fintype
Monoid.toNatPow
Real.instMonoid
Fintype.card
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.Measure.real
β€”Finite.of_fintype
tsum_const
instIsTopologicalAddGroupReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
nsmul_eq_mul
mul_one
RCLike.charZero_rclike
MeasureTheory.setIntegral_const
Real.instCompleteSpace
smul_eq_mul
tendsto_tsum_div_pow_atTop_integral
continuous_const
tendsto_card_div_pow_atTop_volume' πŸ“–mathematicalBornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
MeasurableSet
MeasurableSpace.pi
Real.measurableSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instZeroENNReal
Set.instHasSubset
Set.smulSet
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Nat.card
Set.Elem
Set.instInter
Real.instInv
SetLike.coe
Submodule
Int.instSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
Submodule.span
Set.range
Module.Basis
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
Finite.of_fintype
Monoid.toNatPow
Real.instMonoid
Fintype.card
Filter.atTop
Real.instPreorder
nhds
MeasureTheory.Measure.real
β€”Finite.of_fintype
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
tendsto_of_tendsto_of_tendsto_of_le_of_le'
instOrderTopologyReal
Real.instIsStrictOrderedRing
Filter.Tendsto.congr'
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.comp
tendsto_card_div_pow_atTop_volume
tendsto_nat_floor_atTop
Filter.Tendsto.pow
tendsto_nat_floor_div_atTop
tendsto_nat_ceil_atTop
tendsto_nat_ceil_div_atTop
tendsto_tsum_div_pow_atTop_integral πŸ“–mathematicalContinuous
Real
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Bornology.IsBounded
Pi.instBornology
PseudoMetricSpace.toBornology
MeasurableSet
MeasurableSpace.pi
Real.measurableSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
instZeroENNReal
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
tsum
Set.Elem
Set.instInter
Set.smulSet
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Real.instInv
Real.instNatCast
SetLike.coe
Submodule
Int.instSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
Submodule.span
Set.range
Module.Basis
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
Pi.basisFun
Finite.of_fintype
Set.instMembership
SummationFilter.unconditional
Monoid.toNatPow
Real.instMonoid
Fintype.card
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
β€”Finite.of_fintype
BoxIntegral.le_hasIntegralVertices_of_isBounded
Metric.tendsto_atTop
IsCompact.exists_bound_of_continuousOn
BoxIntegral.Box.isCompact_Icc
Continuous.continuousOn
Set.indicator.eq_1
le_max_of_le_right
Eq.trans_le
norm_zero
le_max_left
MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
MeasureTheory.compl_mem_ae_iff
Filter.univ_mem'
ContinuousOn.continuousAt_indicator
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
Nat.instAtLeastTwoHAddOfNat
BoxIntegral.hasIntegral_iff
MeasureTheory.AEContinuous.hasBoxIntegral
Real.instCompleteSpace
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_of_le_of_lt
LT.lt.trans_le
Nat.ceil_pos
inv_pos
Subtype.prop
BoxIntegral.unitPartition.integralSum_eq_tsum_div
MeasureTheory.Measure.restrict_restrict_of_subset
MeasureTheory.integral_indicator
BoxIntegral.unitPartition.prepartition_isSubordinate
one_div
inv_le_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
le_trans
Nat.le_ceil
Nat.cast_le
BoxIntegral.unitPartition.prepartition_isHenstock
BoxIntegral.unitPartition.prepartition_isPartition
half_lt_self_iff

---

← Back to Index