Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/CStarAlgebra/Basic.lean

Statistics

MetricCount
DefinitionsCStarRing, NormedStarGroup, starRing', toNormedAlgebra, instNormedSpaceSubtypeMemAddSubgroupSelfAdjointOfTrivialStarOfStarModule, starNormedAddGroupHom, starβ‚—α΅’
7
TheoremsinstMulOpposite, instNormOneClassOfNontrivial, mul_star_self_eq_zero_iff, mul_star_self_ne_zero_iff, nnnorm_self_mul_star, nnnorm_star_mul_self, norm_coe_unitary, norm_coe_unitary_mul, norm_mem_unitary_mul, norm_mul_coe_unitary, norm_mul_mem_unitary, norm_mul_self_le, norm_of_mem_unitary, norm_one, norm_self_mul_star, norm_star_mul_self, norm_star_mul_self', norm_unitary_smul, of_le_norm_mul_star_self, star_mul_self_eq_zero_iff, star_mul_self_ne_zero_iff, to_normedStarGroup, nnnorm_mul_self, nnnorm_pow_two_pow, norm_mul_self, norm_pow_two_pow, norm_star_le, to_continuousStar, cstarRing, cstarRing', cstarRing, starRingEnd, to_cstarRing, coe_starβ‚—α΅’, instCStarRingReal, nnnorm_star, norm_star, nnnorm_pow_two_pow, star_isometry, starβ‚—α΅’_apply, starβ‚—α΅’_toContinuousLinearEquiv
41
Total48

CStarRing

Theorems

NameKindAssumesProvesValidatesDepends On
instNormOneClassOfNontrivial πŸ“–mathematicalβ€”NormOneClass
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”norm_one
mul_star_self_eq_zero_iff πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”star_star
star_mul_self_eq_zero_iff
mul_star_self_ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
nnnorm_self_mul_star πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
NNReal
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”norm_self_mul_star
nnnorm_star_mul_self πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
NNReal
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”norm_star_mul_self
norm_coe_unitary πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Real
Real.instOne
β€”sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
zero_le_one
Real.instZeroLEOneClass
one_pow
sq
norm_star_mul_self
Unitary.coe_star_mul_self
norm_one
norm_coe_unitary_mul πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
norm_of_subsingleton
le_antisymm
norm_mul_le
norm_coe_unitary
one_mul
Unitary.coe_star_mul_self
mul_assoc
norm_star
to_normedStarGroup
norm_mem_unitary_mul πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Norm.norm
NormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”norm_coe_unitary_mul
norm_mul_coe_unitary πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
β€”StarMul.star_mul
star_star
norm_star
to_normedStarGroup
norm_mem_unitary_mul
Unitary.star_mem
Subtype.prop
norm_mul_mem_unitary πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Norm.norm
NormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”norm_mul_coe_unitary
norm_mul_self_le πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
β€”β€”
norm_of_mem_unitary πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Norm.norm
NormedRing.toNorm
Real
Real.instOne
β€”norm_coe_unitary
norm_one πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
Real
Real.instOne
β€”norm_pos_iff
one_ne_zero
NeZero.one
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
LT.lt.ne'
norm_star_mul_self
mul_one
star_one
one_mul
norm_self_mul_star πŸ“–mathematicalβ€”Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Real
Real.instMul
β€”star_star
norm_star_mul_self
norm_star
to_normedStarGroup
norm_star_mul_self πŸ“–mathematicalβ€”Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Real
Real.instMul
β€”le_antisymm
LE.le.trans
norm_mul_le
norm_star
to_normedStarGroup
le_refl
norm_mul_self_le
norm_star_mul_self' πŸ“–mathematicalβ€”Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Real
Real.instMul
β€”norm_star_mul_self
norm_star
to_normedStarGroup
norm_unitary_smul πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Submonoid.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”norm_coe_unitary_mul
of_le_norm_mul_star_self πŸ“–mathematicalReal
Real.instLE
Real.instMul
Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
CStarRingβ€”eq_zero_or_norm_pos
norm_zero
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
mul_comm
star_star
LE.le.trans
norm_mul_le
Function.Surjective.forall
Function.Involutive.surjective
InvolutiveStar.star_involutive
norm_star
star_mul_self_eq_zero_iff πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”norm_eq_zero
norm_star_mul_self
mul_self_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
star_mul_self_ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
to_normedStarGroup πŸ“–mathematicalβ€”NormedStarGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”eq_zero_or_norm_pos
norm_zero
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
star_star
LE.le.trans
norm_mul_self_le
norm_mul_le

CStarRing.MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
instMulOpposite πŸ“–mathematicalβ€”CStarRing
MulOpposite
MulOpposite.instNonUnitalNormedRing
MulOpposite.instStarRing
NonUnitalRing.toNonUnitalSemiring
NonUnitalNormedRing.toNonUnitalRing
β€”Eq.le
CStarRing.norm_self_mul_star

IsSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_mul_self πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
StarRing.toStarAddMonoid
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”norm_mul_self
nnnorm_pow_two_pow πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
StarRing.toStarAddMonoid
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Nat.instMonoid
NNReal
instSemiringNNReal
β€”pow_zero
pow_one
pow_succ'
pow_mul'
sq
nnnorm_mul_self
pow
norm_mul_self πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
StarRing.toStarAddMonoid
Norm.norm
NonUnitalNormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Real
Monoid.toNatPow
Real.instMonoid
β€”sq
star_eq
CStarRing.norm_star_mul_self
norm_pow_two_pow πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
StarRing.toStarAddMonoid
Norm.norm
NormedRing.toNorm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Nat.instMonoid
Real
Real.instMonoid
β€”nnnorm_pow_two_pow

NormedStarGroup

Theorems

NameKindAssumesProvesValidatesDepends On
norm_star_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”
to_continuousStar πŸ“–mathematicalβ€”ContinuousStar
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”Isometry.continuous
star_isometry

Pi

Definitions

NameCategoryTheorems
starRing' πŸ“–CompOp
5 mathmath: MeasureTheory.lpNorm_conj, cstarRing', AnalyticAt.harmonicAt_conj, cstarRing, MeasureTheory.eLpNorm_conj

Theorems

NameKindAssumesProvesValidatesDepends On
cstarRing πŸ“–mathematicalCStarRingnonUnitalNormedRing
starRing'
β€”le_of_eq
CStarRing.nnnorm_star_mul_self
Finset.comp_sup_eq_sup_comp_of_is_total
sq
mul_le_mul'
NNReal.mulLeftMono
covariant_swap_mul_of_covariant_mul
bot_eq_zero'
NNReal.instCanonicallyOrderedAdd
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
cstarRing' πŸ“–mathematicalβ€”CStarRing
nonUnitalNormedRing
starRing'
β€”cstarRing

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
cstarRing πŸ“–mathematicalβ€”CStarRing
nonUnitalNormedRing
instStarRing
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”CStarRing.norm_star_mul_self
le_sup_iff
le_total
sup_of_le_right
sup_of_le_left

RingHomIsometric

Theorems

NameKindAssumesProvesValidatesDepends On
starRingEnd πŸ“–mathematicalβ€”RingHomIsometric
CommSemiring.toSemiring
CommRing.toCommSemiring
NormedCommRing.toCommRing
NormedRing.toNorm
NormedCommRing.toNormedRing
starRingEnd
β€”norm_star

StarSubalgebra

Definitions

NameCategoryTheorems
toNormedAlgebra πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
to_cstarRing πŸ“–mathematicalβ€”CStarRing
StarSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
setLike
NormedRing.toNonUnitalNormedRing
SubringClass.toNormedRing
subringClass
starRing
β€”subringClass
CStarRing.norm_mul_self_le

(root)

Definitions

NameCategoryTheorems
CStarRing πŸ“–CompData
21 mathmath: NonUnitalCStarAlgebra.toCStarRing, CommCStarAlgebra.toCStarRing, Quaternion.instCStarRingReal, RCLike.instCStarRing, Prod.cstarRing, ContinuousLinearMap.instCStarRingId, Pi.cstarRing', CStarRing.MulOpposite.instMulOpposite, instCStarRingReal, ContinuousMap.instCStarRing, DoubleCentralizer.instCStarRing, BoundedContinuousFunction.instCStarRing, ZeroAtInftyContinuousMap.instCStarRing, NonUnitalCommCStarAlgebra.toCStarRing, CStarAlgebra.toCStarRing, Unitization.instCStarRing, StarSubalgebra.to_cstarRing, ContinuousMapZero.instCStarRing, Matrix.instCStarRing, CStarMatrix.instCStarRing, CStarRing.of_le_norm_mul_star_self
NormedStarGroup πŸ“–CompData
6 mathmath: ZeroAtInftyContinuousMap.instNormedStarGroup, Matrix.frobenius_normedStarGroup, ContinuousMap.instNormedStarGroup, BoundedContinuousFunction.instNormedStarGroup, CStarRing.to_normedStarGroup, Matrix.instNormedStarGroup
instNormedSpaceSubtypeMemAddSubgroupSelfAdjointOfTrivialStarOfStarModule πŸ“–CompOpβ€”
starNormedAddGroupHom πŸ“–CompOpβ€”
starβ‚—α΅’ πŸ“–CompOp
3 mathmath: starβ‚—α΅’_apply, starβ‚—α΅’_toContinuousLinearEquiv, coe_starβ‚—α΅’

Theorems

NameKindAssumesProvesValidatesDepends On
coe_starβ‚—α΅’ πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
starβ‚—α΅’
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”RingHomInvPair.instStarRingEnd
instCStarRingReal πŸ“–mathematicalβ€”CStarRing
Real
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instStarRingReal
β€”abs_mul_abs_self
norm_mul
NormedDivisionRing.toNormMulClass
nnnorm_star πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
β€”norm_star
norm_star πŸ“–mathematicalβ€”Norm.norm
SeminormedAddCommGroup.toNorm
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”le_antisymm
NormedStarGroup.norm_star_le
star_star
star_isometry πŸ“–mathematicalβ€”Isometry
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”AddMonoidHomClass.isometry_of_norm
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
norm_star
starβ‚—α΅’_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
starβ‚—α΅’
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”RingHomInvPair.instStarRingEnd
starβ‚—α΅’_toContinuousLinearEquiv πŸ“–mathematicalβ€”LinearIsometryEquiv.toContinuousLinearEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
starβ‚—α΅’
starL
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedStarGroup.to_continuousStar
β€”ContinuousLinearEquiv.ext
RingHomInvPair.instStarRingEnd
NormedStarGroup.to_continuousStar

selfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_pow_two_pow πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
StarRing.toStarAddMonoid
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Nat.instMonoid
NNReal
instSemiringNNReal
β€”IsSelfAdjoint.nnnorm_pow_two_pow

---

← Back to Index