Documentation Verification Report

Classes

📁 Source: Mathlib/Analysis/CStarAlgebra/Classes.lean

Statistics

MetricCount
DefinitionsCStarAlgebra, toNonUnitalCStarAlgebra, toNormedAlgebra, toNormedRing, toStarRing, CommCStarAlgebra, toCStarAlgebra, toNonUnitalCommCStarAlgebra, toNormedAlgebra, toNormedCommRing, toStarRing, instCStarAlgebra, instCommCStarAlgebra, instNonUnitalCStarAlgebra, instNonUnitalCommCStarAlgebra, NonUnitalCStarAlgebra, toNonUnitalNormedRing, toNormedSpace, toStarRing, NonUnitalCommCStarAlgebra, toNonUnitalCStarAlgebra, toNonUnitalNormedCommRing, toNormedSpace, toStarRing, nonUnitalCStarAlgebra, nonUnitalCommCStarAlgebra, commCStarAlgebra, cstarAlgebra, instCStarAlgebraForall, instCStarAlgebraProd, instCStarAlgebraSubtypeMemStarSubalgebraComplexElemental, instCommCStarAlgebraComplex, instCommCStarAlgebraForall, instCommCStarAlgebraProd, instCommCStarAlgebraSubtypeMemStarSubalgebraComplexElementalOfIsStarNormal, instNonUnitalCStarAlgebraForall, instNonUnitalCStarAlgebraProd, instNonUnitalCStarAlgebraSubtypeMemNonUnitalStarSubalgebraComplexElemental, instNonUnitalCommCStarAlgebraForall, instNonUnitalCommCStarAlgebraProd, instNonUnitalCommCStarAlgebraSubtypeMemNonUnitalStarSubalgebraComplexElementalOfIsStarNormal
41
TheoremstoCStarRing, toCompleteSpace, toStarModule, toCStarRing, toCompleteSpace, toStarModule, toCStarRing, toCompleteSpace, toIsScalarTower, toSMulCommClass, toStarModule, toCStarRing, toCompleteSpace, toIsScalarTower, toSMulCommClass, toStarModule
16
Total57

CStarAlgebra

Definitions

NameCategoryTheorems
toNonUnitalCStarAlgebra 📖CompOp
57 mathmath: Unitary.openPartialHomeomorph_source, IsStarNormal.spectralRadius_eq_nnnorm, PositiveLinearMap.apply_le_of_isSelfAdjoint, Unitary.mem_pathComponentOne_iff, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, StarAlgebra.elemental.characterSpaceToSpectrum_coe, mem_Icc_iff_nnnorm_le_one, Unitary.openPartialHomeomorph_symm_apply, Unitary.norm_sub_one_lt_two_iff, nnnorm_le_iff_of_nonneg, IsSelfAdjoint.neg_algebraMap_norm_le_self, unitary.norm_sub_eq, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, Unitary.norm_sub_one_sq_eq, instNonnegSpectrumClass, norm_smul_two_inv_smul_add_four_unitary, CFC.monotone_rpow, nnnorm_le_one_iff_of_nonneg, unitary.two_mul_one_sub_le_norm_sub_one_sq, PositiveLinearMap.gnsStarAlgHom_apply, mem_Icc_algebraMap_iff_nnnorm_le, Unitary.openPartialHomeomorph_target, CFC.rpow_le_rpow, Unitary.spectrum_subset_slitPlane_iff_norm_lt_two, rpow_neg_one_le_rpow_neg_one, Unitization.nnreal_cfcₙ_eq_cfc_inr, IsSelfAdjoint.spectralRadius_eq_nnnorm, WStarAlgebra.exists_predual, Unitary.two_mul_one_sub_le_norm_sub_one_sq, rpow_neg_one_le_one, Unitary.norm_sub_eq, selfAdjoint.val_re_map_spectrum, PositiveLinearMap.norm_apply_le_of_nonneg, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, unitary.norm_sub_one_lt_two_iff, unitary.norm_sub_one_sq_eq, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, unitary.norm_argSelfAdjoint_le_pi, Unitary.norm_argSelfAdjoint_le_pi, Unitary.openPartialHomeomorph_apply, instNonnegSpectrumClassComplexUnital, Unitary.argSelfAdjoint_coe, exists_sum_four_unitary, cfcHom_eq_of_isStarNormal, unitary.mem_pathComponentOne_iff, continuousFunctionalCalculus_map_id, nnnorm_le_natCast_iff_of_nonneg, CFC.conjugate_rpow_neg_one_half, span_unitary, le_iff_norm_sqrt_mul_rpow, nnnorm_mem_spectrum_of_nonneg, WeakDual.CharacterSpace.instStarHomClass, selfAdjoint.joined_one_expUnitary, le_iff_norm_sqrt_mul_sqrt_inv, unitary.continuousOn_argSelfAdjoint, unitary.spectrum_subset_slitPlane_iff_norm_lt_two
toNormedAlgebra 📖CompOp
81 mathmath: unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, IsStarNormal.spectralRadius_eq_nnnorm, Unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, mem_Icc_algebraMap_iff_norm_le, PositiveLinearMap.apply_le_of_isSelfAdjoint, CFC.tendsto_cfc_rpow_sub_one_log, Unitary.mem_pathComponentOne_iff, selfAdjoint.expUnitaryPathToOne_apply, selfAdjoint.norm_sq_expUnitary_sub_one, norm_or_neg_norm_mem_spectrum, StarAlgebra.elemental.characterSpaceToSpectrum_coe, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, ModularForm.tsum_logDeriv_eta_q, gelfandTransform_bijective, Unitary.openPartialHomeomorph_symm_apply, Unitary.norm_sub_one_lt_two_iff, nnnorm_le_iff_of_nonneg, IsSelfAdjoint.neg_algebraMap_norm_le_self, gelfandStarTransform_symm_apply, Unitary.expUnitary_eq_mul_inv, IsSelfAdjoint.val_re_map_spectrum, IsSelfAdjoint.isConnected_spectrum_compl, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, selfAdjoint.unitarySelfAddISMul_coe, IsSelfAdjoint.cfc_arg, StarSubalgebra.spectrum_eq, ModularForm.logDeriv_one_sub_mul_cexp_comp, norm_smul_two_inv_smul_add_four_unitary, CFC.log_monotoneOn, IsSelfAdjoint.toReal_spectralRadius_complex_eq_norm, CFC.monotone_rpow, IsSelfAdjoint.sq_spectrumRestricts, ModularForm.logDeriv_eta_eq_E2, PositiveLinearMap.gnsStarAlgHom_apply, mem_Icc_algebraMap_iff_nnnorm_le, CFC.rpow_le_rpow, ModularForm.logDeriv_one_sub_cexp, expUnitary_argSelfAdjoint, Unitary.spectrum_subset_slitPlane_iff_norm_lt_two, selfAdjoint.star_coe_unitarySelfAddISMul, argSelfAdjoint_expUnitary, rpow_neg_one_le_rpow_neg_one, mul_star_le_algebraMap_norm_sq, IsSelfAdjoint.instIsometricContinuousFunctionalCalculus, norm_le_iff_le_algebraMap, IsSelfAdjoint.spectralRadius_eq_nnnorm, ModularForm.summable_logDeriv_one_sub_eta_q, IsStarNormal.instContinuousFunctionalCalculus, star_mul_le_algebraMap_norm_sq, StarSubalgebra.mem_spectrum_iff, rpow_neg_one_le_one, IsSelfAdjoint.map_spectrum_real, StarSubalgebra.coe_isUnit, selfAdjoint.val_re_map_spectrum, CFC.log_le_log, unitary.expUnitary_eq_mul_inv, IsSelfAdjoint.toReal_spectralRadius_eq_norm, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, unitary.norm_sub_one_lt_two_iff, gelfandTransform_isometry, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, norm_mem_spectrum_of_nonneg, toStarModule, IsStarNormal.instIsometricContinuousFunctionalCalculus, Unitary.argSelfAdjoint_coe, ModularForm.logDeriv_qParam, exists_sum_four_unitary, IsSelfAdjoint.le_algebraMap_norm_self, cfcHom_eq_of_isStarNormal, unitary.mem_pathComponentOne_iff, continuousFunctionalCalculus_map_id, CFC.conjugate_rpow_neg_one_half, le_iff_norm_sqrt_mul_rpow, Unitary.path_apply, nnnorm_mem_spectrum_of_nonneg, SpectrumRestricts.nnreal_iff_nnnorm, selfAdjoint.joined_one_expUnitary, le_iff_norm_sqrt_mul_sqrt_inv, unitary.spectrum_subset_slitPlane_iff_norm_lt_two
toNormedRing 📖CompOp
57 mathmath: Unitary.openPartialHomeomorph_source, IsStarNormal.spectralRadius_eq_nnnorm, mem_Icc_algebraMap_iff_norm_le, AlgHomClass.instStarHomClass, Unitary.mem_pathComponentOne_iff, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, StarAlgebra.elemental.characterSpaceToSpectrum_coe, mem_Icc_iff_norm_le_one, gelfandStarTransform_naturality, mem_Icc_iff_nnnorm_le_one, gelfandTransform_bijective, Unitary.openPartialHomeomorph_symm_apply, spectrum.gelfandTransform_eq, unitary.norm_sub_eq, toCompleteSpace, Unitary.instLocPathConnectedSpace, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, IsSelfAdjoint.cfc_arg, StarSubalgebra.spectrum_eq, norm_smul_two_inv_smul_add_four_unitary, CFC.log_monotoneOn, CFC.monotone_rpow, PositiveLinearMap.gnsStarAlgHom_apply, mem_Icc_algebraMap_iff_nnnorm_le, Unitary.openPartialHomeomorph_target, CFC.rpow_le_rpow, mul_star_le_algebraMap_norm_sq, IsSelfAdjoint.instIsometricContinuousFunctionalCalculus, IsStarNormal.instContinuousFunctionalCalculus, toCStarRing, star_mul_le_algebraMap_norm_sq, StarSubalgebra.mem_spectrum_iff, Unitary.isPathConnected_ball, Unitary.norm_sub_eq, StarSubalgebra.coe_isUnit, selfAdjoint.val_re_map_spectrum, Unitization.complex_cfcₙ_eq_cfc_inr, WeakDual.Complex.instStarHomClass, gelfandTransform_isometry, unitary.isPathConnected_ball, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, unitary.norm_argSelfAdjoint_le_pi, Unitary.norm_argSelfAdjoint_le_pi, toStarModule, IsStarNormal.instIsometricContinuousFunctionalCalculus, Unitary.openPartialHomeomorph_apply, Unitary.argSelfAdjoint_coe, exists_sum_four_unitary, cfcHom_eq_of_isStarNormal, unitary.mem_pathComponentOne_iff, continuousFunctionalCalculus_map_id, span_unitary, WeakDual.CharacterSpace.instStarHomClass, selfAdjoint.joined_one_expUnitary, unitary.continuousOn_argSelfAdjoint
toStarRing 📖CompOp
57 mathmath: Unitary.openPartialHomeomorph_source, AlgHomClass.instStarHomClass, CFC.tendsto_cfc_rpow_sub_one_log, Unitary.mem_pathComponentOne_iff, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, StarAlgebra.elemental.characterSpaceToSpectrum_coe, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, Unitary.openPartialHomeomorph_symm_apply, gelfandStarTransform_symm_apply, unitary.norm_sub_eq, Unitary.instLocPathConnectedSpace, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, IsSelfAdjoint.cfc_arg, StarSubalgebra.spectrum_eq, norm_smul_two_inv_smul_add_four_unitary, CFC.log_monotoneOn, CFC.monotone_rpow, PositiveLinearMap.gnsStarAlgHom_apply, Unitary.openPartialHomeomorph_target, CFC.rpow_le_rpow, rpow_neg_one_le_rpow_neg_one, mul_star_le_algebraMap_norm_sq, IsSelfAdjoint.instIsometricContinuousFunctionalCalculus, IsStarNormal.instContinuousFunctionalCalculus, toCStarRing, star_mul_le_algebraMap_norm_sq, StarSubalgebra.mem_spectrum_iff, Unitary.isPathConnected_ball, rpow_neg_one_le_one, Unitary.norm_sub_eq, StarSubalgebra.coe_isUnit, selfAdjoint.val_re_map_spectrum, Unitization.complex_cfcₙ_eq_cfc_inr, CFC.log_le_log, WeakDual.Complex.instStarHomClass, unitary.isPathConnected_ball, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, unitary.norm_argSelfAdjoint_le_pi, Unitary.norm_argSelfAdjoint_le_pi, toStarModule, IsStarNormal.instIsometricContinuousFunctionalCalculus, Unitary.openPartialHomeomorph_apply, Unitary.argSelfAdjoint_coe, exists_sum_four_unitary, cfcHom_eq_of_isStarNormal, unitary.mem_pathComponentOne_iff, continuousFunctionalCalculus_map_id, CFC.conjugate_rpow_neg_one_half, span_unitary, le_iff_norm_sqrt_mul_rpow, WeakDual.CharacterSpace.instStarHomClass, selfAdjoint.joined_one_expUnitary, le_iff_norm_sqrt_mul_sqrt_inv, unitary.continuousOn_argSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
toCStarRing 📖mathematicalCStarRing
NormedRing.toNonUnitalNormedRing
toNormedRing
toStarRing
toCompleteSpace 📖mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NormedRing.toMetricSpace
toNormedRing
toStarModule 📖mathematicalStarModule
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
NormedRing.toRing
toNormedRing
StarRing.toStarMul
toStarRing
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
SeminormedRing.toRing
NormedRing.toSeminormedRing
NormedAlgebra.toAlgebra
toNormedAlgebra

CommCStarAlgebra

Definitions

NameCategoryTheorems
toCStarAlgebra 📖CompOp
13 mathmath: gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, ModularForm.tsum_logDeriv_eta_q, gelfandTransform_bijective, spectrum.gelfandTransform_eq, gelfandStarTransform_symm_apply, gelfandTransform_map_star, ModularForm.logDeriv_one_sub_mul_cexp_comp, ModularForm.logDeriv_eta_eq_E2, ModularForm.logDeriv_one_sub_cexp, ModularForm.summable_logDeriv_one_sub_eta_q, gelfandTransform_isometry, ModularForm.logDeriv_qParam
toNonUnitalCommCStarAlgebra 📖CompOp
35 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, Ideal.toCharacterSpace_apply_eq_zero_of_mem, AlgHomClass.instStarHomClass, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, iteratedDerivWithin_tsum_cexp_eq, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, spectrum.gelfandTransform_eq, gelfandStarTransform_symm_apply, CStarModule.inner_smul_left_complex, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, cfcₙ_real_eq_complex, IsSelfAdjoint.cfc_arg, cfcHom_real_eq_restrict, inr_comp_cfcₙHom_eq_cfcₙAux, instNonemptyElemWeakDualComplexCharacterSpaceOfNontrivial, contDiffOn_tsum_cexp, cfcₙHom_real_eq_restrict, WStarAlgebra.exists_predual, IsStarNormal.instContinuousFunctionalCalculus, WeakDual.CharacterSpace.mem_spectrum_iff_exists, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, Unitization.complex_cfcₙ_eq_cfc_inr, WeakDual.Complex.instStarHomClass, cfc_real_eq_complex, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, IsStarNormal.instIsometricContinuousFunctionalCalculus, WeakDual.CharacterSpace.exists_apply_eq_zero, cfcHom_eq_of_isStarNormal, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, continuousFunctionalCalculus_map_id, CFC.complex_exp_eq_normedSpace_exp, WeakDual.CharacterSpace.instStarHomClass, differentiableAt_iteratedDerivWithin_cexp
toNormedAlgebra 📖CompOp
1 mathmath: toStarModule
toNormedCommRing 📖CompOp
85 mathmath: IsSelfAdjoint.quasispectrumRestricts, Ideal.toCharacterSpace_apply_eq_zero_of_mem, EisensteinSeries.hasSum_e2Summand_symmetricIcc, tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, Unitization.real_cfcₙ_eq_cfc_inr, StarAlgebra.elemental.characterSpaceToSpectrum_coe, iteratedDerivWithin_tsum_cexp_eq, CStarModule.innerSL_apply, isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, ModularForm.tsum_logDeriv_eta_q, EisensteinSeries.summable_left_one_div_linear_sub_one_div_linear, CStarMatrix.toCLM_injective, toCStarRing, gelfandTransform_bijective, EisensteinSeries.e2Summand_summable, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, summable_eisSummand, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, spectrum.gelfandTransform_eq, EisensteinSeries.tsum_symmetricIco_linear_sub_linear_add_one_eq_zero, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, EisensteinSeries.G2_eq_tsum_symmetricIco, gelfandStarTransform_symm_apply, PositiveLinearMap.preGNS_inner_def, IsSelfAdjoint.isConnected_spectrum_compl, EisensteinSeries.tendsto_e2Summand_atTop_nhds_zero, VonNeumannAlgebra.centralizer_centralizer', StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, EisensteinSeries.hasSum_e2Summand_symmetricIco, EisensteinSeries.q_expansion_riemannZeta, VonNeumannAlgebra.mem_carrier, ModularForm.differentiableAt_eta_tprod, cfcHom_real_eq_restrict, CStarMatrix.toCLM_apply_single, IsSelfAdjoint.spectrumRestricts, CStarMatrix.toCLM_apply_eq_sum, toStarModule, CStarMatrix.toCLM_apply, PositiveLinearMap.gnsStarAlgHom_apply, isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts, instNonemptyElemWeakDualComplexCharacterSpaceOfNontrivial, ModularForm.differentiableAt_eta_of_mem_upperHalfPlaneSet, CStarMatrix.mul_entry_mul_eq_inner_toCLM, contDiffOn_tsum_cexp, EisensteinSeries.qExpansion_identity_pnat, Unitization.nnreal_cfcₙ_eq_cfc_inr, cfcₙHom_real_eq_restrict, EisensteinSeries.tsum_tsum_symmetricIco_sub_eq, ModularForm.summable_logDeriv_one_sub_eta_q, WStarAlgebra.exists_predual, EisensteinSeries.q_expansion_bernoulli, EisensteinSeries.tendsto_double_sum_S_act, WeakDual.CharacterSpace.mem_spectrum_iff_exists, EisensteinSeries.summable_e2Summand_symmetricIcc, VonNeumannAlgebra.coe_toStarSubalgebra, summable_prod_eisSummand, EisensteinSeries.G2_eq_tsum_cexp, EisensteinSeries.qExpansion_identity, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, EisensteinSeries.summable_e2Summand_symmetricIco, EisensteinSeries.summable_right_one_div_linear_sub_one_div_linear_succ, gelfandTransform_isometry, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, WeakDual.CharacterSpace.exists_apply_eq_zero, cfcHom_eq_of_isStarNormal, toCompleteSpace, summable_pow_mul_cexp, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, continuousFunctionalCalculus_map_id, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, CStarMatrix.norm_def, ModularForm.multipliableLocallyUniformlyOn_eta, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply, EisensteinSeries.tsum_symmetricIco_tsum_sub_eq
toStarRing 📖CompOp
2 mathmath: toCStarRing, toStarModule

Theorems

NameKindAssumesProvesValidatesDepends On
toCStarRing 📖mathematicalCStarRing
NormedRing.toNonUnitalNormedRing
NormedCommRing.toNormedRing
toNormedCommRing
toStarRing
toCompleteSpace 📖mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NormedRing.toMetricSpace
NormedCommRing.toNormedRing
toNormedCommRing
toStarModule 📖mathematicalStarModule
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
toNormedCommRing
StarRing.toStarMul
toStarRing
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
SeminormedRing.toRing
NormedRing.toSeminormedRing
NormedAlgebra.toAlgebra
toNormedAlgebra

MulOpposite

Definitions

NameCategoryTheorems
instCStarAlgebra 📖CompOp
instCommCStarAlgebra 📖CompOp
instNonUnitalCStarAlgebra 📖CompOp
instNonUnitalCommCStarAlgebra 📖CompOp

NonUnitalCStarAlgebra

Definitions

NameCategoryTheorems
toNonUnitalNormedRing 📖CompOp
153 mathmath: Unitary.openPartialHomeomorph_source, CStarAlgebra.preimage_inr_Icc_zero_one, CStarMatrix.norm_entry_le_norm, IsStarNormal.instNonUnitalContinuousFunctionalCalculus, IsStarNormal.spectralRadius_eq_nnnorm, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, PositiveLinearMap.apply_le_of_isSelfAdjoint, CFC.monotone_nnrpow, StarAlgEquiv.norm_map, CStarAlgebra.inr_mem_Icc_iff_norm_le, Unitary.mem_pathComponentOne_iff, Unitization.real_cfcₙ_eq_cfc_inr, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, StarAlgebra.elemental.characterSpaceToSpectrum_coe, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, CStarAlgebra.span_nonneg_inter_unitBall, WithCStarModule.inner_def, CStarMatrix.instIsUniformAddGroup, CStarAlgebra.mem_Icc_iff_nnnorm_le_one, toCStarRing, CStarMatrix.toCLM_injective, NonUnitalStarAlgHom.nnnorm_apply_le, CStarMatrix.instStarOrderedRing, Unitization.instStarOrderedRing, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.leftMulMapPreGNS_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, Unitary.openPartialHomeomorph_symm_apply, CompletelyPositiveMap.instLinearMapClassComplex, Filter.IsIncreasingApproximateUnit.toIsApproximateUnit, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, Unitary.norm_sub_one_lt_two_iff, CStarAlgebra.nnnorm_le_iff_of_nonneg, PositiveLinearMap.instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass, Filter.IsIncreasingApproximateUnit.eventually_nonneg, IsSelfAdjoint.neg_algebraMap_norm_le_self, gelfandStarTransform_symm_apply, unitary.norm_sub_eq, Filter.IsIncreasingApproximateUnit.eventually_norm, CStarAlgebra.instOrderClosedTopology, PositiveLinearMap.preGNS_inner_def, CStarAlgebra.instNonnegSpectrumClassComplexNonUnital, CStarAlgebra.span_nonneg_inter_unitClosedBall, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, Filter.IsIncreasingApproximateUnit.eventually_nnnorm, PositiveLinearMap.toPreGNS_ofPreGNS, Unitary.norm_sub_one_sq_eq, PositiveLinearMap.exists_norm_apply_le, CStarAlgebra.instNonnegSpectrumClass, Filter.IsIncreasingApproximateUnit.eventually_isSelfAdjoint, CStarModule.norm_inner_le, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, CStarMatrix.ofMatrix_eq_ofMatrixL, CStarAlgebra.nnnorm_le_one_iff_of_nonneg, CStarMatrix.instIsTopologicalAddGroup, unitary.two_mul_one_sub_le_norm_sub_one_sq, CStarMatrix.toCLM_apply, PositiveLinearMap.gnsStarAlgHom_apply, CStarAlgebra.mem_Icc_algebraMap_iff_nnnorm_le, NonUnitalStarAlgHom.nnnorm_map, Unitary.openPartialHomeomorph_target, WithCStarModule.pi_inner, WithCStarModule.prod_norm, NonUnitalStarAlgHom.norm_map, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, Unitary.spectrum_subset_slitPlane_iff_norm_lt_two, WithCStarModule.inner_single_right, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, IsSelfAdjoint.spectralRadius_eq_nnnorm, WStarAlgebra.exists_predual, CFC.nnrpow_le_nnrpow, CStarAlgebra.span_nonneg_inter_closedBall, CStarAlgebra.isClosed_nonneg, Unitary.two_mul_one_sub_le_norm_sub_one_sq, PositiveLinearMap.ofPreGNS_toPreGNS, Filter.IsIncreasingApproximateUnit.eventually_star_eq, CStarMatrix.normedSpaceCore, CStarModule.inner_mul_inner_swap_le, Unitary.norm_sub_eq, CFC.monotone_sqrt, NonUnitalStarAlgHom.isometry, CStarAlgebra.instNonnegSpectrumClass', norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, toCompleteSpace, WithCStarModule.inner_single_left, CStarAlgebra.directedOn_nonneg_ball, PositiveLinearMap.leftMulMapPreGNS_mul_eq_comp, selfAdjoint.val_re_map_spectrum, Unitization.complex_cfcₙ_eq_cfc_inr, PositiveLinearMap.norm_apply_le_of_nonneg, toIsScalarTower, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, StarAlgEquiv.nnnorm_map, PositiveLinearMap.instStarHomClassOfLinearMapClassComplexOfOrderHomClass, CStarAlgebra.spectralOrderedRing, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, CStarMatrix.uniformEmbedding_ofMatrix, CStarAlgebra.inr_mem_Icc_iff_nnnorm_le, unitary.norm_sub_one_lt_two_iff, WithCStarModule.pi_norm_sq, unitary.norm_sub_one_sq_eq, CStarMatrix.instCStarRing, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, unitary.norm_argSelfAdjoint_le_pi, CStarAlgebra.span_nonneg_inter_ball, CStarAlgebra.isBasis_nonneg_sections, Unitary.norm_argSelfAdjoint_le_pi, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, Unitary.openPartialHomeomorph_apply, CStarAlgebra.instNonnegSpectrumClassComplexUnital, Unitary.argSelfAdjoint_coe, CStarAlgebra.hasBasis_approximateUnit, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, CStarAlgebra.exists_sum_four_unitary, cfcHom_eq_of_isStarNormal, NonUnitalStarAlgHom.norm_apply_le, WithCStarModule.prod_inner, unitary.mem_pathComponentOne_iff, toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, continuousFunctionalCalculus_map_id, CStarAlgebra.nnnorm_le_natCast_iff_of_nonneg, CStarAlgebra.span_unitary, le_iff_norm_sqrt_mul_rpow, CStarAlgebra.nnnorm_mem_spectrum_of_nonneg, CStarAlgebra.exists_sum_four_nonneg, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, Unitization.inr_nonneg_iff, CStarMatrix.norm_def, StarAlgEquiv.isometry, CStarMatrix.inner_toCLM_conjTranspose_right, NonUnitalStarAlgHom.instContinuousLinearMapClassComplex, CStarMatrix.toCLM_apply_single_apply, selfAdjoint.joined_one_expUnitary, Unitization.cfcₙ_eq_cfc_inr, le_iff_norm_sqrt_mul_sqrt_inv, unitary.continuousOn_argSelfAdjoint, unitary.spectrum_subset_slitPlane_iff_norm_lt_two
toNormedSpace 📖CompOp
100 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, PositiveLinearMap.apply_le_of_isSelfAdjoint, CFC.monotone_nnrpow, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, Unitization.real_cfcₙ_eq_cfc_inr, StarAlgebra.elemental.characterSpaceToSpectrum_coe, iteratedDerivWithin_tsum_cexp_eq, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, CStarAlgebra.span_nonneg_inter_unitBall, WithCStarModule.inner_def, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, CStarMatrix.toCLM_injective, Unitization.instStarOrderedRing, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.leftMulMapPreGNS_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, CompletelyPositiveMap.instLinearMapClassComplex, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, PositiveLinearMap.instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass, gelfandStarTransform_symm_apply, PositiveLinearMap.preGNS_inner_def, CStarAlgebra.instNonnegSpectrumClassComplexNonUnital, CStarAlgebra.span_nonneg_inter_unitClosedBall, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, selfAdjoint.unitarySelfAddISMul_coe, PositiveLinearMap.toPreGNS_ofPreGNS, PositiveLinearMap.exists_norm_apply_le, CStarAlgebra.instNonnegSpectrumClass, CStarModule.norm_inner_le, cfcHom_real_eq_restrict, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, CStarMatrix.ofMatrix_eq_ofMatrixL, CStarMatrix.toCLM_apply, selfAdjoint.realPart_unitarySelfAddISMul, PositiveLinearMap.gnsStarAlgHom_apply, WithCStarModule.pi_inner, WithCStarModule.prod_norm, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, contDiffOn_tsum_cexp, WithCStarModule.inner_single_right, selfAdjoint.star_coe_unitarySelfAddISMul, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, cfcₙHom_real_eq_restrict, CStarAlgebra.conjugate_le_norm_smul', WStarAlgebra.exists_predual, CFC.nnrpow_le_nnrpow, CStarAlgebra.span_nonneg_inter_closedBall, CStarAlgebra.star_left_conjugate_le_norm_smul, PositiveLinearMap.ofPreGNS_toPreGNS, CStarMatrix.normedSpaceCore, CStarModule.inner_mul_inner_swap_le, CFC.monotone_sqrt, CStarAlgebra.instNonnegSpectrumClass', CStarAlgebra.conjugate_le_norm_smul, norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.inner_single_left, Unitization.complex_cfcₙ_eq_cfc_inr, PositiveLinearMap.norm_apply_le_of_nonneg, toIsScalarTower, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, CompletelyPositiveMap.map_cstarMatrix_nonneg', WithCStarModule.pi_norm_sq, CStarAlgebra.star_right_conjugate_le_norm_smul, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, CStarAlgebra.span_nonneg_inter_ball, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, CStarAlgebra.instNonnegSpectrumClassComplexUnital, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.prod_inner, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, CStarAlgebra.span_unitary, le_iff_norm_sqrt_mul_rpow, CStarAlgebra.exists_sum_four_nonneg, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, CStarMatrix.norm_def, differentiableAt_iteratedDerivWithin_cexp, CStarMatrix.inner_toCLM_conjTranspose_right, NonUnitalStarAlgHom.instContinuousLinearMapClassComplex, CStarMatrix.toCLM_apply_single_apply, Unitization.cfcₙ_eq_cfc_inr, le_iff_norm_sqrt_mul_sqrt_inv
toStarRing 📖CompOp
49 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, CFC.monotone_nnrpow, Unitization.real_cfcₙ_eq_cfc_inr, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, WithCStarModule.inner_def, toCStarRing, CStarMatrix.instStarOrderedRing, Unitization.instStarOrderedRing, CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, PositiveLinearMap.preGNS_inner_def, Filter.IsIncreasingApproximateUnit.eventually_isSelfAdjoint, CStarModule.norm_inner_le, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, PositiveLinearMap.gnsStarAlgHom_apply, WithCStarModule.pi_inner, WithCStarModule.prod_norm, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, WithCStarModule.inner_single_right, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, CFC.nnrpow_le_nnrpow, Filter.IsIncreasingApproximateUnit.eventually_star_eq, CStarModule.inner_mul_inner_swap_le, CFC.monotone_sqrt, norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.inner_single_left, Unitization.complex_cfcₙ_eq_cfc_inr, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, PositiveLinearMap.instStarHomClassOfLinearMapClassComplexOfOrderHomClass, CStarAlgebra.spectralOrderedRing, WithCStarModule.pi_norm_sq, CStarMatrix.instCStarRing, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.prod_inner, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, PositiveLinearMap.preGNS_norm_sq, CStarMatrix.inner_toCLM_conjTranspose_right, Unitization.cfcₙ_eq_cfc_inr

Theorems

NameKindAssumesProvesValidatesDepends On
toCStarRing 📖mathematicalCStarRing
toNonUnitalNormedRing
toStarRing
toCompleteSpace 📖mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NonUnitalNormedRing.toMetricSpace
toNonUnitalNormedRing
toIsScalarTower 📖mathematicalIsScalarTower
Complex
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Complex.instNormedField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
toNonUnitalNormedRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace
SMulZeroClass.toSMul
AddMonoid.toZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
DistribSMul.toSMulZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.zero_add
AddMonoid.add_zero
NonUnitalNonAssocSemiring.toDistribSMul
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
toSMulCommClass 📖mathematicalSMulCommClass
Complex
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Complex.instNormedField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
toNonUnitalNormedRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace
SMulZeroClass.toSMul
AddMonoid.toZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
DistribSMul.toSMulZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.zero_add
AddMonoid.add_zero
NonUnitalNonAssocSemiring.toDistribSMul
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
toStarModule 📖mathematicalStarModule
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
toNonUnitalNormedRing
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
StarRing.toStarMul
toStarRing
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace

NonUnitalCommCStarAlgebra

Definitions

NameCategoryTheorems
toNonUnitalCStarAlgebra 📖CompOp
11 mathmath: summableLocallyUniformlyOn_iteratedDerivWithin_cexp, iteratedDerivWithin_tsum_cexp_eq, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, gelfandStarTransform_symm_apply, cfcHom_real_eq_restrict, contDiffOn_tsum_cexp, cfcₙHom_real_eq_restrict, WStarAlgebra.exists_predual, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, differentiableAt_iteratedDerivWithin_cexp
toNonUnitalNormedCommRing 📖CompOp
33 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, Ideal.toCharacterSpace_apply_eq_zero_of_mem, AlgHomClass.instStarHomClass, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, spectrum.gelfandTransform_eq, gelfandStarTransform_symm_apply, CStarModule.inner_smul_left_complex, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, cfcₙ_real_eq_complex, IsSelfAdjoint.cfc_arg, cfcHom_real_eq_restrict, toCompleteSpace, inr_comp_cfcₙHom_eq_cfcₙAux, instNonemptyElemWeakDualComplexCharacterSpaceOfNontrivial, toStarModule, toCStarRing, IsStarNormal.instContinuousFunctionalCalculus, WeakDual.CharacterSpace.mem_spectrum_iff_exists, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, Unitization.complex_cfcₙ_eq_cfc_inr, WeakDual.Complex.instStarHomClass, toSMulCommClass, cfc_real_eq_complex, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, IsStarNormal.instIsometricContinuousFunctionalCalculus, WeakDual.CharacterSpace.exists_apply_eq_zero, cfcHom_eq_of_isStarNormal, continuousFunctionalCalculus_map_id, CFC.complex_exp_eq_normedSpace_exp, WeakDual.CharacterSpace.instStarHomClass, toIsScalarTower
toNormedSpace 📖CompOp
3 mathmath: toStarModule, toSMulCommClass, toIsScalarTower
toStarRing 📖CompOp
2 mathmath: toStarModule, toCStarRing

Theorems

NameKindAssumesProvesValidatesDepends On
toCStarRing 📖mathematicalCStarRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
toNonUnitalNormedCommRing
toStarRing
toCompleteSpace 📖mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NonUnitalNormedRing.toMetricSpace
NonUnitalNormedCommRing.toNonUnitalNormedRing
toNonUnitalNormedCommRing
toIsScalarTower 📖mathematicalIsScalarTower
Complex
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Complex.instNormedField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
toNonUnitalNormedCommRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace
SMulZeroClass.toSMul
AddMonoid.toZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
DistribSMul.toSMulZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.zero_add
AddMonoid.add_zero
NonUnitalNonAssocSemiring.toDistribSMul
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
toSMulCommClass 📖mathematicalSMulCommClass
Complex
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Complex.instNormedField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
toNonUnitalNormedCommRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace
SMulZeroClass.toSMul
AddMonoid.toZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
DistribSMul.toSMulZeroClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.zero_add
AddMonoid.add_zero
NonUnitalNonAssocSemiring.toDistribSMul
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
toStarModule 📖mathematicalStarModule
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
toNonUnitalNormedCommRing
AddCommGroup.add_comm
NonUnitalNonAssocRing.toMul
NonUnitalNonAssocRing.left_distrib
NonUnitalNonAssocRing.right_distrib
NonUnitalNonAssocRing.zero_mul
NonUnitalNonAssocRing.mul_zero
StarRing.toStarMul
toStarRing
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Module.toDistribMulAction
NormedSpace.toModule
toNormedSpace

NonUnitalStarSubalgebra

Definitions

NameCategoryTheorems
nonUnitalCStarAlgebra 📖CompOp
nonUnitalCommCStarAlgebra 📖CompOp

StarSubalgebra

Definitions

NameCategoryTheorems
commCStarAlgebra 📖CompOp
cstarAlgebra 📖CompOp

(root)

Definitions

NameCategoryTheorems
CStarAlgebra 📖CompData
CommCStarAlgebra 📖CompData
NonUnitalCStarAlgebra 📖CompData
NonUnitalCommCStarAlgebra 📖CompData
instCStarAlgebraForall 📖CompOp
instCStarAlgebraProd 📖CompOp
instCStarAlgebraSubtypeMemStarSubalgebraComplexElemental 📖CompOp
3 mathmath: StarAlgebra.elemental.characterSpaceToSpectrum_coe, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, StarAlgebra.elemental.continuous_characterSpaceToSpectrum
instCommCStarAlgebraComplex 📖CompOp
98 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, IsSelfAdjoint.quasispectrumRestricts, Ideal.toCharacterSpace_apply_eq_zero_of_mem, EisensteinSeries.hasSum_e2Summand_symmetricIcc, AlgHomClass.instStarHomClass, tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, Unitization.real_cfcₙ_eq_cfc_inr, StarAlgebra.elemental.characterSpaceToSpectrum_coe, iteratedDerivWithin_tsum_cexp_eq, CStarModule.innerSL_apply, isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, ModularForm.tsum_logDeriv_eta_q, EisensteinSeries.summable_left_one_div_linear_sub_one_div_linear, CStarMatrix.toCLM_injective, gelfandTransform_bijective, EisensteinSeries.e2Summand_summable, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, summable_eisSummand, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, spectrum.gelfandTransform_eq, EisensteinSeries.tsum_symmetricIco_linear_sub_linear_add_one_eq_zero, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, EisensteinSeries.G2_eq_tsum_symmetricIco, gelfandStarTransform_symm_apply, CStarModule.inner_smul_left_complex, PositiveLinearMap.preGNS_inner_def, IsSelfAdjoint.isConnected_spectrum_compl, EisensteinSeries.tendsto_e2Summand_atTop_nhds_zero, VonNeumannAlgebra.centralizer_centralizer', StarAlgebra.elemental.bijective_characterSpaceToSpectrum, gelfandTransform_map_star, cfcₙ_real_eq_complex, IsSelfAdjoint.cfc_arg, EisensteinSeries.hasSum_e2Summand_symmetricIco, EisensteinSeries.q_expansion_riemannZeta, VonNeumannAlgebra.mem_carrier, ModularForm.differentiableAt_eta_tprod, cfcHom_real_eq_restrict, CStarMatrix.toCLM_apply_single, IsSelfAdjoint.spectrumRestricts, CStarMatrix.toCLM_apply_eq_sum, inr_comp_cfcₙHom_eq_cfcₙAux, CStarMatrix.toCLM_apply, ModularForm.logDeriv_eta_eq_E2, PositiveLinearMap.gnsStarAlgHom_apply, isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts, instNonemptyElemWeakDualComplexCharacterSpaceOfNontrivial, ModularForm.differentiableAt_eta_of_mem_upperHalfPlaneSet, CStarMatrix.mul_entry_mul_eq_inner_toCLM, ModularForm.logDeriv_one_sub_cexp, contDiffOn_tsum_cexp, EisensteinSeries.qExpansion_identity_pnat, Unitization.nnreal_cfcₙ_eq_cfc_inr, cfcₙHom_real_eq_restrict, EisensteinSeries.tsum_tsum_symmetricIco_sub_eq, ModularForm.summable_logDeriv_one_sub_eta_q, WStarAlgebra.exists_predual, EisensteinSeries.q_expansion_bernoulli, IsStarNormal.instContinuousFunctionalCalculus, EisensteinSeries.tendsto_double_sum_S_act, WeakDual.CharacterSpace.mem_spectrum_iff_exists, EisensteinSeries.summable_e2Summand_symmetricIcc, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, VonNeumannAlgebra.coe_toStarSubalgebra, summable_prod_eisSummand, EisensteinSeries.G2_eq_tsum_cexp, EisensteinSeries.qExpansion_identity, Unitization.complex_cfcₙ_eq_cfc_inr, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, WeakDual.Complex.instStarHomClass, cfc_real_eq_complex, EisensteinSeries.summable_e2Summand_symmetricIco, EisensteinSeries.summable_right_one_div_linear_sub_one_div_linear_succ, gelfandTransform_isometry, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, IsStarNormal.instIsometricContinuousFunctionalCalculus, ModularForm.logDeriv_qParam, WeakDual.CharacterSpace.exists_apply_eq_zero, cfcHom_eq_of_isStarNormal, summable_pow_mul_cexp, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, continuousFunctionalCalculus_map_id, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, CFC.complex_exp_eq_normedSpace_exp, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, CStarMatrix.norm_def, ModularForm.multipliableLocallyUniformlyOn_eta, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply, EisensteinSeries.tsum_symmetricIco_tsum_sub_eq
instCommCStarAlgebraForall 📖CompOp
instCommCStarAlgebraProd 📖CompOp
instCommCStarAlgebraSubtypeMemStarSubalgebraComplexElementalOfIsStarNormal 📖CompOp
instNonUnitalCStarAlgebraForall 📖CompOp
instNonUnitalCStarAlgebraProd 📖CompOp
instNonUnitalCStarAlgebraSubtypeMemNonUnitalStarSubalgebraComplexElemental 📖CompOp
instNonUnitalCommCStarAlgebraForall 📖CompOp
instNonUnitalCommCStarAlgebraProd 📖CompOp
instNonUnitalCommCStarAlgebraSubtypeMemNonUnitalStarSubalgebraComplexElementalOfIsStarNormal 📖CompOp

---

← Back to Index