| Name | Category | Theorems |
toNonUnitalNormedRing 📖 | CompOp | 153 mathmath: Unitary.openPartialHomeomorph_source, CStarAlgebra.preimage_inr_Icc_zero_one, CStarMatrix.norm_entry_le_norm, IsStarNormal.instNonUnitalContinuousFunctionalCalculus, IsStarNormal.spectralRadius_eq_nnnorm, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, PositiveLinearMap.apply_le_of_isSelfAdjoint, CFC.monotone_nnrpow, StarAlgEquiv.norm_map, CStarAlgebra.inr_mem_Icc_iff_norm_le, Unitary.mem_pathComponentOne_iff, Unitization.real_cfcₙ_eq_cfc_inr, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, StarAlgebra.elemental.characterSpaceToSpectrum_coe, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, CStarAlgebra.span_nonneg_inter_unitBall, WithCStarModule.inner_def, CStarMatrix.instIsUniformAddGroup, CStarAlgebra.mem_Icc_iff_nnnorm_le_one, toCStarRing, CStarMatrix.toCLM_injective, NonUnitalStarAlgHom.nnnorm_apply_le, CStarMatrix.instStarOrderedRing, Unitization.instStarOrderedRing, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.leftMulMapPreGNS_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, Unitary.openPartialHomeomorph_symm_apply, CompletelyPositiveMap.instLinearMapClassComplex, Filter.IsIncreasingApproximateUnit.toIsApproximateUnit, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, Unitary.norm_sub_one_lt_two_iff, CStarAlgebra.nnnorm_le_iff_of_nonneg, PositiveLinearMap.instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass, Filter.IsIncreasingApproximateUnit.eventually_nonneg, IsSelfAdjoint.neg_algebraMap_norm_le_self, gelfandStarTransform_symm_apply, unitary.norm_sub_eq, Filter.IsIncreasingApproximateUnit.eventually_norm, CStarAlgebra.instOrderClosedTopology, PositiveLinearMap.preGNS_inner_def, CStarAlgebra.instNonnegSpectrumClassComplexNonUnital, CStarAlgebra.span_nonneg_inter_unitClosedBall, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, Filter.IsIncreasingApproximateUnit.eventually_nnnorm, PositiveLinearMap.toPreGNS_ofPreGNS, Unitary.norm_sub_one_sq_eq, PositiveLinearMap.exists_norm_apply_le, CStarAlgebra.instNonnegSpectrumClass, Filter.IsIncreasingApproximateUnit.eventually_isSelfAdjoint, CStarModule.norm_inner_le, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, CStarMatrix.ofMatrix_eq_ofMatrixL, CStarAlgebra.nnnorm_le_one_iff_of_nonneg, CStarMatrix.instIsTopologicalAddGroup, unitary.two_mul_one_sub_le_norm_sub_one_sq, CStarMatrix.toCLM_apply, PositiveLinearMap.gnsStarAlgHom_apply, CStarAlgebra.mem_Icc_algebraMap_iff_nnnorm_le, NonUnitalStarAlgHom.nnnorm_map, Unitary.openPartialHomeomorph_target, WithCStarModule.pi_inner, WithCStarModule.prod_norm, NonUnitalStarAlgHom.norm_map, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, Unitary.spectrum_subset_slitPlane_iff_norm_lt_two, WithCStarModule.inner_single_right, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, IsSelfAdjoint.spectralRadius_eq_nnnorm, WStarAlgebra.exists_predual, CFC.nnrpow_le_nnrpow, CStarAlgebra.span_nonneg_inter_closedBall, CStarAlgebra.isClosed_nonneg, Unitary.two_mul_one_sub_le_norm_sub_one_sq, PositiveLinearMap.ofPreGNS_toPreGNS, Filter.IsIncreasingApproximateUnit.eventually_star_eq, CStarMatrix.normedSpaceCore, CStarModule.inner_mul_inner_swap_le, Unitary.norm_sub_eq, CFC.monotone_sqrt, NonUnitalStarAlgHom.isometry, CStarAlgebra.instNonnegSpectrumClass', norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, toCompleteSpace, WithCStarModule.inner_single_left, CStarAlgebra.directedOn_nonneg_ball, PositiveLinearMap.leftMulMapPreGNS_mul_eq_comp, selfAdjoint.val_re_map_spectrum, Unitization.complex_cfcₙ_eq_cfc_inr, PositiveLinearMap.norm_apply_le_of_nonneg, toIsScalarTower, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, StarAlgEquiv.nnnorm_map, PositiveLinearMap.instStarHomClassOfLinearMapClassComplexOfOrderHomClass, CStarAlgebra.spectralOrderedRing, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, CStarMatrix.uniformEmbedding_ofMatrix, CStarAlgebra.inr_mem_Icc_iff_nnnorm_le, unitary.norm_sub_one_lt_two_iff, WithCStarModule.pi_norm_sq, unitary.norm_sub_one_sq_eq, CStarMatrix.instCStarRing, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, unitary.norm_argSelfAdjoint_le_pi, CStarAlgebra.span_nonneg_inter_ball, CStarAlgebra.isBasis_nonneg_sections, Unitary.norm_argSelfAdjoint_le_pi, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, Unitary.openPartialHomeomorph_apply, CStarAlgebra.instNonnegSpectrumClassComplexUnital, Unitary.argSelfAdjoint_coe, CStarAlgebra.hasBasis_approximateUnit, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, CStarAlgebra.exists_sum_four_unitary, cfcHom_eq_of_isStarNormal, NonUnitalStarAlgHom.norm_apply_le, WithCStarModule.prod_inner, unitary.mem_pathComponentOne_iff, toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, continuousFunctionalCalculus_map_id, CStarAlgebra.nnnorm_le_natCast_iff_of_nonneg, CStarAlgebra.span_unitary, le_iff_norm_sqrt_mul_rpow, CStarAlgebra.nnnorm_mem_spectrum_of_nonneg, CStarAlgebra.exists_sum_four_nonneg, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, Unitization.inr_nonneg_iff, CStarMatrix.norm_def, StarAlgEquiv.isometry, CStarMatrix.inner_toCLM_conjTranspose_right, NonUnitalStarAlgHom.instContinuousLinearMapClassComplex, CStarMatrix.toCLM_apply_single_apply, selfAdjoint.joined_one_expUnitary, Unitization.cfcₙ_eq_cfc_inr, le_iff_norm_sqrt_mul_sqrt_inv, unitary.continuousOn_argSelfAdjoint, unitary.spectrum_subset_slitPlane_iff_norm_lt_two
|
toNormedSpace 📖 | CompOp | 100 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, PositiveLinearMap.apply_le_of_isSelfAdjoint, CFC.monotone_nnrpow, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, Unitization.real_cfcₙ_eq_cfc_inr, StarAlgebra.elemental.characterSpaceToSpectrum_coe, iteratedDerivWithin_tsum_cexp_eq, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, CStarAlgebra.span_nonneg_inter_unitBall, WithCStarModule.inner_def, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, CStarMatrix.toCLM_injective, Unitization.instStarOrderedRing, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.leftMulMapPreGNS_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, CompletelyPositiveMap.instLinearMapClassComplex, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, PositiveLinearMap.instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass, gelfandStarTransform_symm_apply, PositiveLinearMap.preGNS_inner_def, CStarAlgebra.instNonnegSpectrumClassComplexNonUnital, CStarAlgebra.span_nonneg_inter_unitClosedBall, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, selfAdjoint.unitarySelfAddISMul_coe, PositiveLinearMap.toPreGNS_ofPreGNS, PositiveLinearMap.exists_norm_apply_le, CStarAlgebra.instNonnegSpectrumClass, CStarModule.norm_inner_le, cfcHom_real_eq_restrict, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, CStarMatrix.ofMatrix_eq_ofMatrixL, CStarMatrix.toCLM_apply, selfAdjoint.realPart_unitarySelfAddISMul, PositiveLinearMap.gnsStarAlgHom_apply, WithCStarModule.pi_inner, WithCStarModule.prod_norm, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, contDiffOn_tsum_cexp, WithCStarModule.inner_single_right, selfAdjoint.star_coe_unitarySelfAddISMul, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, cfcₙHom_real_eq_restrict, CStarAlgebra.conjugate_le_norm_smul', WStarAlgebra.exists_predual, CFC.nnrpow_le_nnrpow, CStarAlgebra.span_nonneg_inter_closedBall, CStarAlgebra.star_left_conjugate_le_norm_smul, PositiveLinearMap.ofPreGNS_toPreGNS, CStarMatrix.normedSpaceCore, CStarModule.inner_mul_inner_swap_le, CFC.monotone_sqrt, CStarAlgebra.instNonnegSpectrumClass', CStarAlgebra.conjugate_le_norm_smul, norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.inner_single_left, Unitization.complex_cfcₙ_eq_cfc_inr, PositiveLinearMap.norm_apply_le_of_nonneg, toIsScalarTower, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, CompletelyPositiveMap.map_cstarMatrix_nonneg', WithCStarModule.pi_norm_sq, CStarAlgebra.star_right_conjugate_le_norm_smul, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, CStarAlgebra.span_nonneg_inter_ball, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, CStarAlgebra.instNonnegSpectrumClassComplexUnital, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.prod_inner, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, CStarAlgebra.span_unitary, le_iff_norm_sqrt_mul_rpow, CStarAlgebra.exists_sum_four_nonneg, PositiveLinearMap.preGNS_norm_sq, WeakDual.CharacterSpace.instStarHomClass, CStarMatrix.norm_def, differentiableAt_iteratedDerivWithin_cexp, CStarMatrix.inner_toCLM_conjTranspose_right, NonUnitalStarAlgHom.instContinuousLinearMapClassComplex, CStarMatrix.toCLM_apply_single_apply, Unitization.cfcₙ_eq_cfc_inr, le_iff_norm_sqrt_mul_sqrt_inv
|
toStarRing 📖 | CompOp | 49 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, CFC.monotoneOn_one_sub_one_add_inv, toStarModule, CFC.monotone_nnrpow, Unitization.real_cfcₙ_eq_cfc_inr, WithCStarModule.prod_norm_sq, CStarModule.innerSL_apply, WithCStarModule.inner_def, toCStarRing, CStarMatrix.instStarOrderedRing, Unitization.instStarOrderedRing, CStarMatrix.inner_toCLM_conjTranspose_left, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, PositiveLinearMap.preGNS_inner_def, Filter.IsIncreasingApproximateUnit.eventually_isSelfAdjoint, CStarModule.norm_inner_le, WithCStarModule.pi_norm, inr_comp_cfcₙHom_eq_cfcₙAux, CFC.monotoneOn_one_sub_one_add_inv_real, PositiveLinearMap.gnsStarAlgHom_apply, WithCStarModule.pi_inner, WithCStarModule.prod_norm, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarModule.norm_sq_eq, WithCStarModule.inner_single_right, Unitization.nnreal_cfcₙ_eq_cfc_inr, CStarModule.norm_eq_csSup, CFC.nnrpow_le_nnrpow, Filter.IsIncreasingApproximateUnit.eventually_star_eq, CStarModule.inner_mul_inner_swap_le, CFC.monotone_sqrt, norm_cfcₙ_one_sub_one_add_inv_lt_one, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.inner_single_left, Unitization.complex_cfcₙ_eq_cfc_inr, CFC.sqrt_le_sqrt, CStarModule.continuous_inner, PositiveLinearMap.instStarHomClassOfLinearMapClassComplexOfOrderHomClass, CStarAlgebra.spectralOrderedRing, WithCStarModule.pi_norm_sq, CStarMatrix.instCStarRing, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, WithCStarModule.prod_inner, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, PositiveLinearMap.preGNS_norm_sq, CStarMatrix.inner_toCLM_conjTranspose_right, Unitization.cfcₙ_eq_cfc_inr
|