cfc π | CompOp | 179 mathmath: isUnit_cfc_iff, isUnit_cfc, cfc_le_algebraMap_iff, cfc_sum_univ, cfc_pow, CFC.abs_eq_cfc_norm, Filter.Tendsto.cfc, nnnorm_cfc_lt, StarAlgHom.map_cfc, CFC.tendsto_cfc_rpow_sub_one_log, Matrix.IsHermitian.cfc_eq, cfc_const_zero, integrableOn_cfc', Unitization.real_cfcβ_eq_cfc_inr, norm_cfc_lt_iff, cfc_map_div, cfc_const_one, cfc_commute_cfc, tendsto_cfc_fun, cfc_comp_star, cfc_comp_smul, cfc_apply_one, cfc_apply_of_not_and, ContinuousAt.cfc, cfc_sub, cfc_complex_eq_real, norm_cfc_le_iff, Continuous.cfc', cfc_apply_mkD, cfc_nonneg_iff, Continuous.cfc_nnreal', CFC.rpow_def, ContinuousOn.cfc_nnreal', IsGreatest.nnnorm_cfc_nnreal, ContinuousOn.cfc, cfcβ_eq_cfc, cfc_map_prod, cfc_comp_pow, cfc_id', Commute.cfc_real, cfc_map_spectrum, Matrix.IsHermitian.charpoly_cfc_eq, lipschitzOnWith_cfc_fun_of_subset, cfc_real_eq_nnreal, continuousOn_cfc_setProd, IsGreatest.norm_cfc, IsSelfAdjoint.cfc, IsGreatest.nnnorm_cfc, cfc_nonpos_iff, cfc_map_polynomial, continuousOn_cfc_nnreal, cfc_nnreal_eq_real, Continuous.cfc_fun, one_le_cfc_iff, CFC.exp_eq_normedSpace_exp, IsSelfAdjoint.cfc_arg, cfc_add_const, val_cfcUnits, cfc_def, cfc_comp', cfc_sum, lipschitzOnWith_cfc_fun, Continuous.cfc_nnreal_of_mem_nhdsSet, cfc_apply_zero, ContinuousOn.cfc_nnreal_of_mem_nhdsSet, cfc_eq_cfc_iff_eqOn, cfc_mono, cfc_le_algebraMap, CFC.rpow_neg_one_eq_cfc_inv, algebraMap_le_cfc, nnnorm_cfc_le_iff, cfc_inv, cfc_neg, cfc_comp_zpow, Continuous.cfc_of_mem_nhdsSet, ContinuousOn.cfc_nnreal, cfc_integral, nnnorm_cfc_nnreal_lt, continuousWithinAt_cfc_fun, cfc_zpow, cfc_eq_cfcL_mkD, nnnorm_cfc_nnreal_le, cfc_nnreal_le_iff, Continuous.cfc_nnreal, ContinuousOn.cfc_of_mem_nhdsSet, nnnorm_cfc_nnreal_le_iff, range_cfc_eq_range_cfcHom, cfc_inv_id, one_le_cfc, cfc_star_id, cfc_one, cfc_nonneg, val_inv_cfcUnits, cfc_const, cfc_eval_C, cfcHom_eq_cfc_extend, range_cfc_nnreal, nnnorm_cfc_le, cfc_comp, Unitization.nnreal_cfcβ_eq_cfc_inr, integrable_cfc', nnnorm_apply_le_nnnorm_cfc, Continuous.cfc, cfc_apply_mem_elemental, cfc_apply, cfc_polynomial, cfc_comp_norm, apply_le_nnnorm_cfc_nnreal, cfc_nonneg_of_predicate, Commute.cfc, range_cfc_nnreal_eq_image_cfc_real, IsStarNormal.cfc_map, cfc_comp_neg, cfc_smul, cfc_const_add, cfc_apply_of_not_predicate, cfc_zero, norm_cfc_le, cfc_le_iff, cfc_apply_pi, cfc_unitary_iff, ContinuousOn.cfc', cfc_map_pi, cfc_mul, CFC.sqrt_eq_cfc, ContinuousOn.cfc_fun, cfc_id, Filter.Tendsto.cfc_nnreal, nnnorm_cfc_lt_iff, cfc_le_one, Unitization.complex_cfcβ_eq_cfc_inr, cfc_smul_id, cfc_eq_cfcL, cfc_tsub, norm_apply_le_norm_cfc, integrable_cfc, cfc_predicate, nnnorm_cfc_nnreal_lt_iff, cfc_real_eq_complex, Commute.cfc_nnreal, cfc_comp_const_mul, cfc_congr, MonotoneOn.nnnorm_cfc, cfc_setIntegral', cfc_le_one_iff, continuousOn_cfc_nnreal_setProd, cfc_const_mul_id, integrableOn_cfc, cfc_cases, continuousOn_cfc, cfc_pow_id, cfc_isStrictlyPositive_iff, cfc_algebraMap, cfc_apply_of_not_continuousOn, cfc_star, ContinuousAt.cfc_nnreal, Unitary.argSelfAdjoint_coe, ContinuousWithinAt.cfc, cfc_eval_X, ContinuousWithinAt.cfc_nnreal, CFC.real_exp_eq_normedSpace_exp, range_cfc, SpectrumRestricts.cfc_eq_restrict, CFC.complex_exp_eq_normedSpace_exp, StarAlgHomClass.map_cfc, IsSelfAdjoint.commute_cfc, cfc_setIntegral, cfc_const_mul, cfc_comp_inv, norm_cfc_lt, cfc_neg_id, cfc_add, cfc_integral', CFC.rpow_eq_cfc_real, continuousAt_cfc_fun, cfc_comp_polynomial, cfc_nonpos, Unitization.cfcβ_eq_cfc_inr, algebraMap_le_cfc_iff
|