| Name | Category | Theorems |
instCStarModule 📖 | CompOp | 12 mathmath: inner_def, CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
|
instCStarModuleComplex 📖 | CompOp | — |
instCStarModuleForall 📖 | CompOp | 6 mathmath: CStarMatrix.inner_toCLM_conjTranspose_left, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, inner_single_left, CStarMatrix.inner_toCLM_conjTranspose_right
|
instCStarModuleProd 📖 | CompOp | 1 mathmath: prod_inner
|
instNormForall 📖 | CompOp | 12 mathmath: CStarMatrix.inner_toCLM_conjTranspose_left, norm_apply_le_norm, pi_norm, pi_inner, norm_single, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, pi_norm_le_sum_norm, norm_equiv_le_norm_pi, inner_single_left, pi_norm_sq, CStarMatrix.inner_toCLM_conjTranspose_right
|
instNormProd 📖 | CompOp | 6 mathmath: prod_norm_sq, prod_norm_le_norm_add, prod_norm, norm_equiv_le_norm_prod, max_le_prod_norm, prod_inner
|
instNormedAddCommGroupForall 📖 | CompOp | 11 mathmath: CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
|
instNormedAddCommGroupProd 📖 | CompOp | — |
instNormedSpaceComplexForall 📖 | CompOp | 3 mathmath: CStarMatrix.norm_def', CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, CStarMatrix.norm_def
|
instNormedSpaceComplexProd 📖 | CompOp | — |
normedAddCommGroupPiAux 📖 | CompOp | — |
normedAddCommGroupProdAux 📖 | CompOp | — |