Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Analysis/CStarAlgebra/Module/Defs.lean

Statistics

MetricCount
DefinitionsCStarModule, innerSL, innerβ‚›β‚—, norm, normedAddCommGroup, toInner
6
Theoremscontinuous_inner, innerSL_apply, inner_add_left, inner_add_right, inner_mul_inner_swap_le, inner_neg_left, inner_neg_right, inner_op_smul_left, inner_op_smul_right, inner_self, inner_self_nonneg, inner_smul_left_complex, inner_smul_left_real, inner_smul_right_complex, inner_smul_right_real, inner_sub_left, inner_sub_right, inner_sum_left, inner_sum_right, inner_zero_left, inner_zero_right, innerβ‚›β‚—_apply, isSelfAdjoint_inner_self, norm_eq_csSup, norm_eq_sqrt_norm_inner_self, norm_inner_le, norm_nonneg, norm_pos, norm_sq_eq, norm_triangle, norm_zero, norm_zero_iff, normedSpaceCore, star_inner
34
Total40

CStarModule

Definitions

NameCategoryTheorems
innerSL πŸ“–CompOp
1 mathmath: innerSL_apply
innerβ‚›β‚— πŸ“–CompOp
1 mathmath: innerβ‚›β‚—_apply
norm πŸ“–CompOpβ€”
normedAddCommGroup πŸ“–CompOpβ€”
toInner πŸ“–CompOp
40 mathmath: innerβ‚›β‚—_apply, inner_sub_left, WithCStarModule.prod_norm_sq, innerSL_apply, WithCStarModule.inner_def, CStarMatrix.inner_toCLM_conjTranspose_left, inner_smul_right_real, inner_smul_right_complex, inner_smul_left_complex, star_inner, norm_eq_sqrt_norm_inner_self, norm_inner_le, inner_self, inner_zero_left, WithCStarModule.pi_norm, inner_zero_right, inner_sub_right, WithCStarModule.pi_inner, WithCStarModule.prod_norm, inner_op_smul_left, CStarMatrix.mul_entry_mul_eq_inner_toCLM, norm_sq_eq, WithCStarModule.inner_single_right, inner_smul_left_real, norm_eq_csSup, inner_neg_right, inner_op_smul_right, inner_add_left, inner_mul_inner_swap_le, WithCStarModule.inner_single_left, inner_sum_left, inner_add_right, inner_self_nonneg, continuous_inner, inner_sum_right, WithCStarModule.pi_norm_sq, inner_neg_left, WithCStarModule.prod_inner, isSelfAdjoint_inner_self, CStarMatrix.inner_toCLM_conjTranspose_right

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_inner πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Complex
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNorm
NormedAddCommGroup.toNorm
β€”Continuous.clm_apply
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Continuous.comp'
ContinuousLinearMap.continuous
Continuous.fst
continuous_id'
Continuous.snd
innerSL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Complex
Complex.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
NonUnitalNormedRing.toNormedAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
ContinuousLinearMap.funLike
CommSemiring.toSemiring
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalSemiring.toContinuousAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Complex.commRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
Complex.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NormedSpace.toIsBoundedSMul
innerSL
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalCStarAlgebra.toStarRing
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNorm
NormedAddCommGroup.toNorm
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
inner_add_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
β€”star_star
star_inner
inner_add_right
StarAddMonoid.star_add
inner_add_right πŸ“–mathematicalβ€”Inner.inner
toInner
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”β€”
inner_mul_inner_swap_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Complex
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalNormedRing.toNorm
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NonUnitalSeminormedRing.toPseudoMetricSpace
Real.normedField
NormedSpace.complexToReal
Monoid.toNatPow
Norm.norm
β€”eq_or_ne
inner_zero_left
NonUnitalCStarAlgebra.toStarModule
inner_zero_right
MulZeroClass.mul_zero
norm_zero
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
zero_smul
inner_self_nonneg
inner_sub_right
inner_op_smul_right
inner_sub_left
inner_op_smul_left
inner_smul_left_real
mul_sub
mul_smul_comm
SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
inner_smul_right_real
smul_sub
mul_assoc
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
sub_le_sub_right
CStarAlgebra.star_right_conjugate_le_norm_smul
Real.sq_sqrt
norm_nonneg
norm_eq_sqrt_norm_inner_self
smul_le_smul_iff_of_pos_left
IsOrderedModule.toPosSMulMono
instIsOrderedModule
Real.instStarOrderedRing
StarModule.complexToReal
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
PosSMulReflectLT.toPosSMulReflectLE
Real.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
PosSMulStrictMono.toPosSMulReflectLT
Real.instIsStrictOrderedRing
instPosSMulStrictMono
IsOrderedCancelAddMonoid.toIsCancelAdd
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
norm_pos
star_inner
sub_self
zero_sub
add_zero
inner_neg_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
β€”smulCommClass_self
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_neg_right πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
β€”smulCommClass_self
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_op_smul_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
β€”star_inner
inner_op_smul_right
StarMul.star_mul
inner_op_smul_right πŸ“–mathematicalβ€”Inner.inner
toInner
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”β€”
inner_self πŸ“–mathematicalβ€”Inner.inner
toInner
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
inner_self_nonneg πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Inner.inner
toInner
β€”β€”
inner_smul_left_complex πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NonUnitalCommCStarAlgebra.toNonUnitalNormedCommRing
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
instCommCStarAlgebraComplex
StarRing.toStarAddMonoid
Complex.instStarRing
β€”star_inner
inner_smul_right_complex
StarModule.star_smul
inner_smul_left_real πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
Module.complexToReal
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”star_inner
inner_smul_right_complex
StarModule.star_smul
StarModule.complexToReal
TrivialStar.star_trivial
instTrivialStarReal
inner_smul_right_complex πŸ“–mathematicalβ€”Inner.inner
toInner
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”β€”
inner_smul_right_real πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
Module.complexToReal
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”star_inner
inner_smul_left_complex
Complex.conj_ofReal
StarModule.star_smul
StarModule.complexToReal
TrivialStar.star_trivial
instTrivialStarReal
inner_sub_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
β€”smulCommClass_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_sub_right πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
β€”smulCommClass_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_sum_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Finset.sum
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
β€”map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SMulCommClass.symm
smulCommClass_self
inner_sum_right πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
Finset.sum
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
β€”map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smulCommClass_self
inner_zero_left πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
β€”smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_zero_right πŸ“–mathematicalβ€”Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smulCommClass_self
innerβ‚›β‚—_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Complex
Complex.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
LinearMap.instFunLike
CommSemiring.toSemiring
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Complex.commRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
innerβ‚›β‚—
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
β€”smulCommClass_self
isSelfAdjoint_inner_self πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
StarRing.toStarAddMonoid
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
β€”star_inner
norm_eq_csSup πŸ“–mathematicalβ€”Norm.norm
SupSet.sSup
Real
Real.instSupSet
setOf
Real.instLE
Real.instOne
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Complex
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
β€”normedSpaceCore
IsGreatest.csSup_eq
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_norm
inv_mul_le_one_of_leβ‚€
RCLike.toPosMulReflectLT
Real.instZeroLEOneClass
le_rfl
norm_nonneg
inner_smul_left_real
NonUnitalCStarAlgebra.toStarModule
pow_two
inv_mul_mul_self
norm_inner_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
one_mul
norm_eq_sqrt_norm_inner_self πŸ“–mathematicalβ€”Norm.norm
Real.sqrt
Inner.inner
toInner
β€”β€”
norm_inner_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Complex
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
Real.instMul
β€”star_inner
CStarRing.norm_self_mul_star
NonUnitalCStarAlgebra.toCStarRing
pow_two
CStarAlgebra.norm_le_norm_of_nonneg_of_le
mul_star_self_nonneg
inner_mul_inner_swap_le
norm_smul
NormedSpace.toNormSMulClass
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
sq_abs
norm_eq_sqrt_norm_inner_self
Real.sq_sqrt
mul_pow
pow_le_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
norm_nonneg
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
norm_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Norm.norm
β€”norm_eq_sqrt_norm_inner_self
norm_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Norm.norm
β€”norm_eq_sqrt_norm_inner_self
inner_self
norm_sq_eq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
Real.instMonoid
Norm.norm
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
Inner.inner
toInner
NonUnitalRing.toNonUnitalSemiring
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Complex
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
β€”norm_eq_sqrt_norm_inner_self
Real.sq_sqrt
norm_triangle πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Real.instAdd
β€”norm_eq_sqrt_norm_inner_self
inner_add_right
inner_add_left
Real.sq_sqrt
norm_add₃_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_add_le
add_le_add
add_le_add_right
norm_inner_le
Nat.instAtLeastTwoHAddOfNat
add_pow_two
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
pow_le_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
add_nonneg
Nat.instCharZero
norm_zero πŸ“–mathematicalβ€”Norm.norm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Real
Real.instZero
β€”norm_eq_sqrt_norm_inner_self
inner_zero_right
NonUnitalCStarAlgebra.toStarModule
norm_zero
Real.sqrt_zero
norm_zero_iff πŸ“–mathematicalβ€”Norm.norm
Real
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”norm_eq_sqrt_norm_inner_self
inner_zero_right
NonUnitalCStarAlgebra.toStarModule
norm_zero
Real.sqrt_zero
normedSpaceCore πŸ“–mathematicalβ€”NormedSpace.Core
Complex
Complex.instNormedField
β€”norm_nonneg
norm_eq_sqrt_norm_inner_self
inner_smul_right_complex
inner_smul_left_complex
NonUnitalCStarAlgebra.toStarModule
norm_smul
NormedSpace.toNormSMulClass
RCLike.norm_conj
Real.sqrt_mul'
Real.sqrt_mul_self
norm_triangle
norm_zero_iff
star_inner πŸ“–mathematicalβ€”Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Inner.inner
toInner
β€”β€”

(root)

Definitions

NameCategoryTheorems
CStarModule πŸ“–CompDataβ€”

---

← Back to Index