| Name | Category | Theorems |
addEquiv π | CompOp | β |
equiv π | CompOp | 30 mathmath: equiv_add, equiv_symm_snd, equiv_symm_neg, equiv_neg, equiv_symm_smul, linearEquiv_apply, CStarMatrix.toCLM_apply_single, equiv_zero, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, norm_single, equiv_symm_sub, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, equiv_smul, norm_equiv_le_norm_prod, equiv_pi_apply, equiv_sub, equiv_snd, norm_equiv_le_norm_pi, inner_single_left, equiv_symm_add, equiv_fst, equiv_symm_fst, equivL_symm_apply, equiv_symm_pi_apply, equivL_apply, equiv_symm_zero, CStarMatrix.toCLM_apply_single_apply
|
equivL π | CompOp | 2 mathmath: equivL_symm_apply, equivL_apply
|
instAdd π | CompOp | 6 mathmath: add_fst, equiv_add, add_apply, instContinuousAdd, equiv_symm_add, add_snd
|
instAddCommGroup π | CompOp | 22 mathmath: instIsUniformAddGroup, CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, linearEquiv_apply, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, map_top_submodule, inner_single_left, equivL_symm_apply, equivL_apply, prod_inner, instModuleFinite, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
|
instAddMonoid π | CompOp | β |
instBornology π | CompOp | β |
instCoeFunForall π | CompOp | β |
instInhabited π | CompOp | β |
instModule π | CompOp | 21 mathmath: CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, linearEquiv_apply, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, map_top_submodule, inner_single_left, equivL_symm_apply, equivL_apply, prod_inner, instModuleFinite, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
|
instNeg π | CompOp | 5 mathmath: neg_fst, neg_snd, equiv_symm_neg, equiv_neg, neg_apply
|
instSMul π | CompOp | 15 mathmath: smul_fst, CStarMatrix.inner_toCLM_conjTranspose_left, equiv_symm_smul, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, equiv_smul, instContinuousSMul, inner_single_left, instIsScalarTower, instSMulCommClass, smul_snd, smul_apply, prod_inner, CStarMatrix.inner_toCLM_conjTranspose_right
|
instSub π | CompOp | 5 mathmath: sub_snd, equiv_symm_sub, equiv_sub, sub_apply, sub_fst
|
instSubNegMonoid π | CompOp | β |
instSubNegZeroMonoid π | CompOp | β |
instUniformSpace π | CompOp | 17 mathmath: instIsUniformAddGroup, CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, instCompleteSpace, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, CStarMatrix.mul_entry_mul_eq_inner_toCLM, instContinuousSMul, instContinuousAdd, equivL_symm_apply, equivL_apply, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
|
instUnique π | CompOp | β |
instZero π | CompOp | 7 mathmath: CStarMatrix.norm_def', zero_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, equiv_zero, zero_snd, zero_fst, equiv_symm_zero
|
linearEquiv π | CompOp | 3 mathmath: linearEquiv_apply, linearEquiv_symm_apply, map_top_submodule
|
uniformEquiv π | CompOp | β |
Β«termCβα΅α΅α΅(_,_)Β» πΒ» "API Documentation") | CompOp | β |