Documentation Verification Report

Synonym

πŸ“ Source: Mathlib/Analysis/CStarAlgebra/Module/Synonym.lean

Statistics

MetricCount
DefinitionsWithCStarModule, addEquiv, equiv, equivL, instAdd, instAddCommGroup, instAddMonoid, instBornology, instCoeFunForall, instInhabited, instModule, instNeg, instSMul, instSub, instSubNegMonoid, instSubNegZeroMonoid, instUniformSpace, instUnique, instZero, linearEquiv, uniformEquiv, Β«termCβ‹†α΅α΅’α΅ˆ(_,_)»»)
22
Theoremsadd_apply, add_fst, add_snd, equivL_apply, equivL_symm_apply, equiv_add, equiv_fst, equiv_neg, equiv_pi_apply, equiv_smul, equiv_snd, equiv_sub, equiv_symm_add, equiv_symm_fst, equiv_symm_neg, equiv_symm_pi_apply, equiv_symm_smul, equiv_symm_snd, equiv_symm_sub, equiv_symm_zero, equiv_zero, ext, ext_iff, instCompleteSpace, instContinuousAdd, instContinuousSMul, instIsScalarTower, instIsUniformAddGroup, instModuleFinite, instNonempty, instNontrivial, instSMulCommClass, linearEquiv_apply, linearEquiv_symm_apply, map_top_submodule, neg_apply, neg_fst, neg_snd, smul_apply, smul_fst, smul_snd, sub_apply, sub_fst, sub_snd, zero_apply, zero_fst, zero_snd
47
Total69

WithCStarModule

Definitions

NameCategoryTheorems
addEquiv πŸ“–CompOpβ€”
equiv πŸ“–CompOp
30 mathmath: equiv_add, equiv_symm_snd, equiv_symm_neg, equiv_neg, equiv_symm_smul, linearEquiv_apply, CStarMatrix.toCLM_apply_single, equiv_zero, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, norm_single, equiv_symm_sub, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, equiv_smul, norm_equiv_le_norm_prod, equiv_pi_apply, equiv_sub, equiv_snd, norm_equiv_le_norm_pi, inner_single_left, equiv_symm_add, equiv_fst, equiv_symm_fst, equivL_symm_apply, equiv_symm_pi_apply, equivL_apply, equiv_symm_zero, CStarMatrix.toCLM_apply_single_apply
equivL πŸ“–CompOp
2 mathmath: equivL_symm_apply, equivL_apply
instAdd πŸ“–CompOp
6 mathmath: add_fst, equiv_add, add_apply, instContinuousAdd, equiv_symm_add, add_snd
instAddCommGroup πŸ“–CompOp
22 mathmath: instIsUniformAddGroup, CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, linearEquiv_apply, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, map_top_submodule, inner_single_left, equivL_symm_apply, equivL_apply, prod_inner, instModuleFinite, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
instAddMonoid πŸ“–CompOpβ€”
instBornology πŸ“–CompOpβ€”
instCoeFunForall πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
21 mathmath: CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, linearEquiv_apply, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, linearEquiv_symm_apply, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, map_top_submodule, inner_single_left, equivL_symm_apply, equivL_apply, prod_inner, instModuleFinite, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
instNeg πŸ“–CompOp
5 mathmath: neg_fst, neg_snd, equiv_symm_neg, equiv_neg, neg_apply
instSMul πŸ“–CompOp
15 mathmath: smul_fst, CStarMatrix.inner_toCLM_conjTranspose_left, equiv_symm_smul, pi_inner, CStarMatrix.mul_entry_mul_eq_inner_toCLM, inner_single_right, equiv_smul, instContinuousSMul, inner_single_left, instIsScalarTower, instSMulCommClass, smul_snd, smul_apply, prod_inner, CStarMatrix.inner_toCLM_conjTranspose_right
instSub πŸ“–CompOp
5 mathmath: sub_snd, equiv_symm_sub, equiv_sub, sub_apply, sub_fst
instSubNegMonoid πŸ“–CompOpβ€”
instSubNegZeroMonoid πŸ“–CompOpβ€”
instUniformSpace πŸ“–CompOp
17 mathmath: instIsUniformAddGroup, CStarMatrix.toCLM_injective, CStarMatrix.norm_def', CStarMatrix.inner_toCLM_conjTranspose_left, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, instCompleteSpace, CStarMatrix.toCLM_apply_single, CStarMatrix.toCLM_apply_eq_sum, CStarMatrix.toCLM_apply, CStarMatrix.mul_entry_mul_eq_inner_toCLM, instContinuousSMul, instContinuousAdd, equivL_symm_apply, equivL_apply, CStarMatrix.norm_def, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply
instUnique πŸ“–CompOpβ€”
instZero πŸ“–CompOp
7 mathmath: CStarMatrix.norm_def', zero_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, equiv_zero, zero_snd, zero_fst, equiv_symm_zero
linearEquiv πŸ“–CompOp
3 mathmath: linearEquiv_apply, linearEquiv_symm_apply, map_top_submodule
uniformEquiv πŸ“–CompOpβ€”
Β«termCβ‹†α΅α΅’α΅ˆ(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”WithCStarModule
instAdd
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
add_fst πŸ“–mathematicalβ€”WithCStarModule
instAdd
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
add_snd πŸ“–mathematicalβ€”WithCStarModule
instAdd
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
equivL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
WithCStarModule
UniformSpace.toTopologicalSpace
instUniformSpace
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
equivL
Equiv
Equiv.instEquivLike
equiv
β€”RingHomInvPair.ids
equivL_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
AddCommGroup.toAddCommMonoid
WithCStarModule
instUniformSpace
instAddCommGroup
instModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
equivL
Equiv
Equiv.instEquivLike
Equiv.symm
equiv
β€”RingHomInvPair.ids
equiv_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
equiv_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”β€”
equiv_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
equiv_pi_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”β€”
equiv_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
instSMul
β€”β€”
equiv_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”β€”
equiv_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
equiv_symm_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAdd
β€”β€”
equiv_symm_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”
equiv_symm_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instNeg
β€”β€”
equiv_symm_pi_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”
equiv_symm_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
instSMul
β€”β€”
equiv_symm_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”
equiv_symm_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instSub
β€”β€”
equiv_symm_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instZero
β€”β€”
equiv_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithCStarModule
EquivLike.toFunLike
Equiv.instEquivLike
equiv
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
ext πŸ“–β€”β€”β€”β€”β€”
ext_iff πŸ“–β€”β€”β€”β€”ext
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
WithCStarModule
instUniformSpace
β€”UniformEquiv.completeSpace_iff
instContinuousAdd πŸ“–mathematicalβ€”ContinuousAdd
WithCStarModule
UniformSpace.toTopologicalSpace
instUniformSpace
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”ContinuousAdd.induced
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
instContinuousSMul πŸ“–mathematicalβ€”ContinuousSMul
WithCStarModule
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
instUniformSpace
β€”ContinuousSMul.induced
RingHomInvPair.ids
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
WithCStarModule
instSMul
β€”β€”
instIsUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
WithCStarModule
instUniformSpace
AddCommGroup.toAddGroup
instAddCommGroup
β€”IsUniformAddGroup.comap
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
instModuleFinite πŸ“–mathematicalβ€”Module.Finite
WithCStarModule
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
β€”β€”
instNonempty πŸ“–mathematicalβ€”WithCStarModuleβ€”β€”
instNontrivial πŸ“–mathematicalβ€”Nontrivial
WithCStarModule
β€”β€”
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
WithCStarModule
instSMul
β€”β€”
linearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
WithCStarModule
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
linearEquiv
Equiv
Equiv.instEquivLike
equiv
β€”RingHomInvPair.ids
linearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
WithCStarModule
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
linearEquiv
Equiv
Equiv.instEquivLike
Equiv.symm
equiv
β€”RingHomInvPair.ids
map_top_submodule πŸ“–mathematicalβ€”Submodule.map
WithCStarModule
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.symm
linearEquiv
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
RingHomInvPair.ids
Submodule.map_eq_top_iff
neg_apply πŸ“–mathematicalβ€”WithCStarModule
instNeg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_fst πŸ“–mathematicalβ€”WithCStarModule
instNeg
Prod.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_snd πŸ“–mathematicalβ€”WithCStarModule
instNeg
Prod.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
smul_apply πŸ“–mathematicalβ€”WithCStarModule
instSMul
Pi.instSMul
β€”β€”
smul_fst πŸ“–mathematicalβ€”WithCStarModule
instSMul
Prod.instSMul
β€”β€”
smul_snd πŸ“–mathematicalβ€”WithCStarModule
instSMul
Prod.instSMul
β€”β€”
sub_apply πŸ“–mathematicalβ€”WithCStarModule
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
sub_fst πŸ“–mathematicalβ€”WithCStarModule
instSub
Prod.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
sub_snd πŸ“–mathematicalβ€”WithCStarModule
instSub
Prod.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
zero_apply πŸ“–mathematicalβ€”WithCStarModule
instZero
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
zero_fst πŸ“–mathematicalβ€”WithCStarModule
instZero
Prod.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
zero_snd πŸ“–mathematicalβ€”WithCStarModule
instZero
Prod.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”

(root)

Definitions

NameCategoryTheorems
WithCStarModule πŸ“–CompOp
71 mathmath: WithCStarModule.add_fst, WithCStarModule.equiv_add, WithCStarModule.neg_fst, WithCStarModule.add_apply, WithCStarModule.neg_snd, WithCStarModule.instIsUniformAddGroup, WithCStarModule.equiv_symm_snd, WithCStarModule.prod_norm_sq, CStarMatrix.toCLM_injective, WithCStarModule.smul_fst, CStarMatrix.norm_def', WithCStarModule.equiv_symm_neg, CStarMatrix.inner_toCLM_conjTranspose_left, WithCStarModule.zero_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, WithCStarModule.prod_norm_le_norm_add, WithCStarModule.norm_apply_le_norm, WithCStarModule.equiv_neg, WithCStarModule.neg_apply, WithCStarModule.instCompleteSpace, WithCStarModule.sub_snd, WithCStarModule.equiv_symm_smul, WithCStarModule.linearEquiv_apply, CStarMatrix.toCLM_apply_single, WithCStarModule.equiv_zero, WithCStarModule.zero_snd, CStarMatrix.toCLM_apply_eq_sum, WithCStarModule.pi_norm, CStarMatrix.toCLM_apply, WithCStarModule.linearEquiv_symm_apply, WithCStarModule.pi_inner, WithCStarModule.norm_single, WithCStarModule.prod_norm, WithCStarModule.equiv_symm_sub, CStarMatrix.mul_entry_mul_eq_inner_toCLM, WithCStarModule.inner_single_right, WithCStarModule.equiv_smul, WithCStarModule.instContinuousSMul, WithCStarModule.instContinuousAdd, WithCStarModule.norm_equiv_le_norm_prod, WithCStarModule.map_top_submodule, WithCStarModule.pi_norm_le_sum_norm, WithCStarModule.equiv_pi_apply, WithCStarModule.equiv_sub, WithCStarModule.equiv_snd, WithCStarModule.norm_equiv_le_norm_pi, WithCStarModule.inner_single_left, WithCStarModule.instIsScalarTower, WithCStarModule.zero_fst, WithCStarModule.equiv_symm_add, WithCStarModule.instNontrivial, WithCStarModule.equiv_fst, WithCStarModule.add_snd, WithCStarModule.sub_apply, WithCStarModule.pi_norm_sq, WithCStarModule.equiv_symm_fst, WithCStarModule.max_le_prod_norm, WithCStarModule.equivL_symm_apply, WithCStarModule.sub_fst, WithCStarModule.instSMulCommClass, WithCStarModule.equiv_symm_pi_apply, WithCStarModule.smul_snd, WithCStarModule.equivL_apply, WithCStarModule.smul_apply, WithCStarModule.prod_inner, WithCStarModule.instModuleFinite, WithCStarModule.equiv_symm_zero, CStarMatrix.norm_def, WithCStarModule.instNonempty, CStarMatrix.inner_toCLM_conjTranspose_right, CStarMatrix.toCLM_apply_single_apply

---

← Back to Index