| Name | Category | Theorems |
coeHom π | CompOp | 1 mathmath: coeHom_apply
|
instAdd π | CompOp | 3 mathmath: add_fst, add_snd, add_toProd
|
instAlgebra π | CompOp | 4 mathmath: algebraMap_snd, algebraMap_toProd, algebraMap_fst, coe_eq_algebraMap
|
instCStarAlgebraComplex π | CompOp | β |
instCoeTC π | CompOp | β |
instInhabited π | CompOp | β |
instIntCast π | CompOp | 3 mathmath: intCast_snd, intCast_fst, intCast_toProd
|
instModule π | CompOp | 1 mathmath: coeHom_apply
|
instMul π | CompOp | 2 mathmath: mul_fst, mul_snd
|
instNatCast π | CompOp | 3 mathmath: natCast_fst, natCast_toProd, natCast_snd
|
instNeg π | CompOp | 3 mathmath: neg_snd, neg_toProd, neg_fst
|
instNormedAlgebra π | CompOp | β |
instNormedRing π | CompOp | 11 mathmath: nnnorm_def', nnnorm_snd, norm_def', norm_def, nnnorm_def, norm_snd, nnnorm_fst, instCStarRing, norm_fst, isUniformEmbedding_toProdMulOpposite, instCompleteSpace
|
instNormedSpace π | CompOp | β |
instOne π | CompOp | 3 mathmath: one_snd, one_fst, one_toProd
|
instPow π | CompOp | 3 mathmath: pow_snd, pow_toProd, pow_fst
|
instRing π | CompOp | 11 mathmath: nnnorm_def', norm_def', norm_def, nnnorm_def, algebraMap_snd, algebraMap_toProd, coeHom_apply, algebraMap_fst, coe_eq_algebraMap, toProdHom_apply, toProdMulOppositeHom_apply
|
instSMul π | CompOp | 7 mathmath: instIsScalarTower, smul_toProd, smul_fst, instIsCentralScalar, instStarModule, instSMulCommClass, smul_snd
|
instStar π | CompOp | 4 mathmath: star_snd, star_fst, coeHom_apply, instStarModule
|
instStarAddMonoid π | CompOp | β |
instStarRing π | CompOp | 1 mathmath: instCStarRing
|
instSub π | CompOp | 3 mathmath: sub_toProd, sub_fst, sub_snd
|
instZero π | CompOp | 3 mathmath: zero_snd, zero_fst, zero_toProd
|
toProd π | CompOp | 46 mathmath: star_snd, intCast_snd, natCast_fst, zero_snd, ext_iff, pow_snd, nnnorm_snd, smul_toProd, norm_fst_eq_snd, central, neg_snd, range_toProd, add_fst, smul_fst, star_fst, add_snd, norm_snd, nnnorm_fst, neg_toProd, algebraMap_snd, one_snd, algebraMap_toProd, pow_toProd, zero_fst, sub_toProd, nnnorm_fst_eq_snd, one_fst, sub_fst, pow_fst, algebraMap_fst, mul_fst, zero_toProd, norm_fst, coe_fst, natCast_toProd, one_toProd, natCast_snd, sub_snd, intCast_fst, toProdHom_apply, mul_snd, intCast_toProd, smul_snd, coe_snd, add_toProd, neg_fst
|
toProdHom π | CompOp | 3 mathmath: norm_def, nnnorm_def, toProdHom_apply
|
toProdMulOpposite π | CompOp | 4 mathmath: range_toProdMulOpposite, toProdMulOpposite_injective, isUniformEmbedding_toProdMulOpposite, toProdMulOppositeHom_apply
|
toProdMulOppositeHom π | CompOp | 3 mathmath: nnnorm_def', norm_def', toProdMulOppositeHom_apply
|