Documentation Verification Report

PositiveLinearMap

πŸ“ Source: Mathlib/Analysis/CStarAlgebra/PositiveLinearMap.lean

Statistics

MetricCount
DefinitionsPositiveLinearMap
1
Theoremsapply_le_of_isSelfAdjoint, exists_norm_apply_le, instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass, instStarHomClassOfLinearMapClassComplexOfOrderHomClass, norm_apply_le_of_nonneg, map_isSelfAdjoint
6
Total7

PositiveLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le_of_isSelfAdjoint πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
PositiveLinearMap
Complex
Complex.instSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
instFunLike
RingHom
Real
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Real.instCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
NormedAlgebra.toAlgebra
Real.normedField
NormedAlgebra.complexToReal
CStarAlgebra.toNormedAlgebra
Norm.norm
NormedRing.toNorm
β€”OrderHomClass.mono
instOrderHomClass
IsSelfAdjoint.le_algebraMap_norm_self
exists_norm_apply_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
PositiveLinearMap
Complex
Complex.instSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
instFunLike
Real.instMul
NNReal.toReal
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Push.not_forall_eq
eq_zero_or_norm_pos
norm_zero
MulZeroClass.mul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
instLinearMapClass
smul_nonneg
IsOrderedModule.toPosSMulMono
instIsOrderedModule
Real.instStarOrderedRing
StarModule.complexToReal
NonUnitalCStarAlgebra.toStarModule
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_norm
inv_mul_cancelβ‚€
LT.lt.ne'
map_smul_of_tower
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.left
lt_inv_mul_iffβ‚€'
Summable.of_norm
NonUnitalCStarAlgebra.toCompleteSpace
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
zpow_neg
zpow_natCast
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Real.norm_ofNat
mul_one
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
tendsto_pow_atTop_atTop_of_one_lt
StarOrderedRing.toExistsAddOfLE
Real.instArchimedean
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.not_ge
LT.lt.le
le_inv_mul_iffβ‚€
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
sq
pow_mul'
zpow_pos
CStarAlgebra.norm_le_norm_of_nonneg_of_le
map_nonneg
OrderHomClass.mono
instOrderHomClass
Summable.le_tsum
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
CStarAlgebra.instOrderClosedTopology
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
CStarAlgebra.exists_sum_four_nonneg
map_sum
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LE.le.trans
norm_sum_le
Complex.norm_I
one_pow
one_mul
Finset.sum_le_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
NNReal.coe_nonneg
Finset.sum_const
Fintype.card_fin
nsmul_eq_mul
mul_assoc
instContinuousLinearMapClassComplexOfLinearMapClassOfOrderHomClass πŸ“–mathematicalβ€”ContinuousLinearMapClass
Complex
Complex.instSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
β€”exists_norm_apply_le
ContinuousLinearMap.continuous
instStarHomClassOfLinearMapClassComplexOfOrderHomClass πŸ“–mathematicalβ€”StarHomClass
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
StarRing.toStarAddMonoid
NonUnitalCStarAlgebra.toStarRing
β€”CStarAlgebra.exists_sum_four_nonneg
IsSelfAdjoint.star_eq
LE.le.isSelfAdjoint
map_nonneg
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
star_sum
Finset.sum_congr
StarModule.star_smul
NonUnitalCStarAlgebra.toStarModule
star_pow
Complex.conj_I
map_sum
map_smul
SemilinearMapClass.toMulActionSemiHomClass
norm_apply_le_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
Real
Real.instLE
Norm.norm
NormedRing.toNorm
DFunLike.coe
PositiveLinearMap
Complex
Complex.instSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNormedSpace
instFunLike
Real.instMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”norm_norm
mul_comm
norm_smul
NormedSpace.toNormSMulClass
CStarAlgebra.norm_le_norm_of_nonneg_of_le
map_nonneg
Complex.coe_smul
LinearMapClass.map_smul
instLinearMapClass
OrderHomClass.mono
instOrderHomClass
Algebra.algebraMap_eq_smul_one
IsSelfAdjoint.le_algebraMap_norm_self
IsSelfAdjoint.of_nonneg

(root)

Definitions

NameCategoryTheorems
PositiveLinearMap πŸ“–CompData
27 mathmath: PositiveLinearMap.apply_le_of_isSelfAdjoint, PositiveLinearMap.coe_toLinearMap, PositiveLinearMap.nsmul_apply, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.map_nonneg, PositiveLinearMap.preGNS_inner_def, PositiveLinearMap.ext_iff, RealRMK.rieszMeasure_le_of_eq_one, RealRMK.integral_rieszMeasure, CompactlySupportedContinuousMap.toRealPositiveLinear_apply, PositiveLinearMap.exists_norm_apply_le, PositiveLinearMap.zero_apply, PositiveLinearMap.toLinearMap_injective, PositiveLinearMap.map_smul_of_tower, CompactlySupportedContinuousMap.toNNRealLinear_apply, PositiveLinearMap.add_apply, PositiveLinearMap.instLinearMapClass, PositiveLinearMap.instOrderHomClass, CompactlySupportedContinuousMap.eq_toRealPositiveLinear_toReal, PositiveLinearMap.norm_apply_le_of_nonneg, PositiveLinearMap.toLinearMap_zero, CompactlySupportedContinuousMap.integralPositiveLinearMap_toFun, RealRMK.le_rieszMeasure_tsupport_subset, PositiveLinearMap.toLinearMap_nsmul, PositiveLinearMap.preGNS_norm_sq, PositiveLinearMap.toLinearMap_add, map_isSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
map_isSelfAdjoint πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
StarRing.toStarAddMonoid
DFunLike.coe
PositiveLinearMap
Complex
Complex.instSemiring
PositiveLinearMap.instFunLike
β€”Real.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal
CFC.posPart_sub_negPart
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
PositiveLinearMap.instLinearMapClass
IsSelfAdjoint.sub
IsSelfAdjoint.of_nonneg
PositiveLinearMap.map_nonneg
CFC.posPart_nonneg
CFC.negPart_nonneg

---

← Back to Index