Documentation Verification Report

Projection

📁 Source: Mathlib/Analysis/CStarAlgebra/Projection.lean

Statistics

MetricCount
Definitions0
TheoremsisSelfAdjoint_iff_isStarNormal, isStarProjection_iff_isIdempotentElem_and_isStarNormal
2
Total2

IsIdempotentElem

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint_iff_isStarNormal 📖mathematicalIsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
IsStarNormal
Complex.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instContinuousStar
quasispectrum_subset
Set.mem_singleton_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isStarProjection_iff_isIdempotentElem_and_isStarNormal 📖mathematicalIsStarProjection
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
IsIdempotentElem
IsStarNormal
Complex.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instContinuousStar
IsIdempotentElem.isSelfAdjoint_iff_isStarNormal
isStarProjection_iff

---

← Back to Index