Documentation Verification Report

Spectrum

πŸ“ Source: Mathlib/Analysis/CStarAlgebra/Spectrum.lean

Statistics

MetricCount
Definitions0
TheoremsinstStarHomClass, le_nnnorm_of_mem_quasispectrum, im_eq_zero_of_mem_spectrum, isConnected_spectrum_compl, mem_spectrum_eq_re, spectralRadius_eq_nnnorm, toReal_spectralRadius_complex_eq_norm, val_re_map_spectrum, spectralRadius_eq_nnnorm, instContinuousLinearMapClassComplex, nnnorm_apply_le, norm_apply_le, isometry, nnnorm_map, norm_map, coe_isUnit, mem_spectrum_iff, spectrum_eq, spectrum_subset_circle, instStarHomClass, instStarHomClass, mem_spectrum_eq_re, val_re_map_spectrum, norm_eq_one_of_unitary, subset_circle_of_unitary, spectrum_subset_circle
26
Total26

AlgHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
instStarHomClass πŸ“–mathematicalβ€”StarHomClass
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NonUnitalCommCStarAlgebra.toNonUnitalNormedCommRing
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
instCommCStarAlgebraComplex
Complex.instStarRing
β€”WeakDual.Complex.instStarHomClass

CStarAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
le_nnnorm_of_mem_quasispectrum πŸ“–mathematicalNNReal
Set
Set.instMembership
quasispectrum
instCommSemiringNNReal
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
NNReal.instModuleOfReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”NonUnitalCStarAlgebra.toIsScalarTower
NonUnitalCStarAlgebra.toSMulCommClass
CStarRing.instRegularNormedAlgebra
NonUnitalCStarAlgebra.toCStarRing
Unitization.nnnorm_inr
spectrum.le_nnnorm_of_mem
Unitization.instCompleteSpace
Complex.instCompleteSpace
NonUnitalCStarAlgebra.toCompleteSpace
Unitization.instNormOneClass
NNReal.instIsScalarTowerOfReal
IsScalarTower.complexToReal
IsScalarTower.left
Unitization.quasispectrum_eq_spectrum_inr'

IsSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
im_eq_zero_of_mem_spectrum πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
Complex
Set
Set.instMembership
spectrum
Complex.instCommSemiring
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
Complex.im
Real
Real.instZero
β€”mem_spectrum_eq_re
Complex.ofReal_im
isConnected_spectrum_compl πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
IsConnected
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
Compl.compl
Set
Set.instCompl
spectrum
Complex.instCommSemiring
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
β€”IsConnected.union
Filter.NeBot.nonempty_of_mem
NontriviallyNormedField.cobounded_neBot
Filter.mem_map
AntilipschitzWith.tendsto_cobounded
Isometry.antilipschitz
Complex.isometry_ofReal
Bornology.IsBounded.compl
spectrum.isBounded
CStarAlgebra.toCompleteSpace
Set.Nonempty.mono
Set.instReflSubset
Set.Nonempty.image
Complex.isConnected_of_upperHalfPlane
Set.subset_inter
im_eq_zero_of_mem_spectrum
Set.mem_setOf_eq
le_of_lt
Set.inter_subset_right
Complex.isConnected_of_lowerHalfPlane
Set.inter_univ
Set.eq_univ_of_forall
le_total
Set.setOf_or
Set.inter_union_distrib_left
mem_spectrum_eq_re πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
Complex
Set
Set.instMembership
spectrum
Complex.instCommSemiring
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
Complex.ofReal
Complex.re
β€”Complex.instCharZero
NonUnitalSeminormedRing.toIsTopologicalRing
NormedSpace.exp_mem_unitary_of_mem_skewAdjoint
CStarAlgebra.toCompleteSpace
NormedStarGroup.to_continuousStar
CStarRing.to_normedStarGroup
CStarAlgebra.toCStarRing
smul_mem_skewAdjoint
Complex.conj_I
Complex.I_ne_zero
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
spectrum.exp_mem_exp
spectrum.smul_mem_smul_iff
Complex.ext
Complex.ofReal_re
NormedSpace.exp.congr_simp
Complex.I_mul
Complex.norm_exp
spectrum.subset_circle_of_unitary
spectralRadius_eq_nnnorm πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
spectralRadius
Complex
Complex.instNormedField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
β€”tendsto_const_nhds
tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Nat.instAtLeastTwoHAddOfNat
nnnorm_pow_two_pow
CStarAlgebra.toCStarRing
ENNReal.coe_pow
ENNReal.rpow_natCast
ENNReal.rpow_mul
Nat.cast_pow
one_div
mul_inv_cancelβ‚€
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.instNontrivial
RCLike.charZero_rclike
ENNReal.rpow_one
Filter.Tendsto.comp
spectrum.pow_nnnorm_pow_one_div_tendsto_nhds_spectralRadius
CStarAlgebra.toCompleteSpace
tendsto_pow_atTop_atTop_of_one_lt
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
toReal_spectralRadius_complex_eq_norm πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
ENNReal.toReal
spectralRadius
Complex
Complex.instNormedField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
Norm.norm
NormedRing.toNorm
β€”spectralRadius_eq_nnnorm
val_re_map_spectrum πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
spectrum
Complex
Complex.instCommSemiring
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
Set.image
Real
Complex.ofReal
Complex.re
β€”le_antisymm
mem_spectrum_eq_re

IsStarNormal

Theorems

NameKindAssumesProvesValidatesDepends On
spectralRadius_eq_nnnorm πŸ“–mathematicalβ€”spectralRadius
Complex
Complex.instNormedField
NormedRing.toRing
CStarAlgebra.toNormedRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
β€”StrictMono.injective
ENNReal.pow_right_strictMono
two_ne_zero
ENNReal.rpow_natCast
ENNReal.rpow_mul
mul_comm
ENNReal.coe_pow
sq
CStarRing.nnnorm_star_mul_self
CStarAlgebra.toCStarRing
Commute.mul_pow
star_comm_self'
star_pow
Filter.Tendsto.comp
Continuous.tendsto
ENNReal.continuous_pow
spectrum.pow_nnnorm_pow_one_div_tendsto_nhds_spectralRadius
CStarAlgebra.toCompleteSpace
IsSelfAdjoint.spectralRadius_eq_nnnorm
IsSelfAdjoint.star_mul_self
ENNReal.coe_mul
tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat

NonUnitalStarAlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousLinearMapClassComplex πŸ“–mathematicalβ€”ContinuousLinearMapClass
Complex
Complex.instSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
β€”NonUnitalAlgHomClass.instLinearMapClass
AddMonoidHomClass.continuous_of_bound
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
one_mul
nnnorm_apply_le
nnnorm_apply_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
β€”NonUnitalCStarAlgebra.toIsScalarTower
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.left
iSup_le_iSup_of_subset
AlgHom.spectrum_apply_subset
StarAlgHom.instAlgHomClass
ENNReal.coe_le_coe
IsSelfAdjoint.spectralRadius_eq_nnnorm
IsSelfAdjoint.map
StarAlgHom.instStarHomClass
nonneg_le_nonneg_of_sq_le_sq
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedRing.toMulPosMono
NNReal.instIsOrderedRing
zero_le'
NonUnitalCStarAlgebra.toStarModule
Unitization.instCStarRing
NonUnitalCStarAlgebra.toCStarRing
CStarAlgebra.toCStarRing
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
IsSelfAdjoint.star_mul_self
CStarAlgebra.toStarModule
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_add
Unitization.nnnorm_inr
norm_apply_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
β€”nnnorm_apply_le

StarAlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isometry πŸ“–mathematicalβ€”Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NonUnitalNormedRing.toMetricSpace
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
EquivLike.toFunLike
β€”AddMonoidHomClass.isometry_of_norm
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass
norm_map
nnnorm_map πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
EquivLike.toFunLike
β€”le_antisymm
NonUnitalStarAlgHom.nnnorm_apply_le
instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass
symm_apply_apply
instNonUnitalAlgEquivClass
NonUnitalStarRingHomClass.toStarHomClass
NonUnitalAlgHomClass.toNonUnitalRingHomClass
NonUnitalStarAlgHomClass.instNonUnitalStarRingHomClassOfStarHomClass
RingEquivClass.toNonUnitalRingHomClass
NonUnitalAlgEquivClass.toRingEquivClass
StarRingEquivClass.instNonUnitalStarRingHomClass
instStarRingEquivClass
norm_map πŸ“–mathematicalβ€”Norm.norm
NonUnitalNormedRing.toNorm
NonUnitalCStarAlgebra.toNonUnitalNormedRing
DFunLike.coe
EquivLike.toFunLike
β€”nnnorm_map

StarSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
coe_isUnit πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
CStarAlgebra.toNormedRing
StarSubalgebra
Complex
Complex.instCommSemiring
Complex.instStarRing
CStarAlgebra.toStarRing
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
SetLike.instMembership
setLike
SubringClass.toNormedRing
subringClass
Complex.commRing
β€”subringClass
IsUnit.mul
IsUnit.star
starMemClass
Subalgebra.spectrum_eq_of_isPreconnected_compl
CStarAlgebra.toCompleteSpace
smulMemClass
IsConnected.isPreconnected
subsemiringClass
IsSelfAdjoint.isConnected_spectrum_compl
IsSelfAdjoint.map
StarAlgHom.instStarHomClass
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
spectrum.zero_notMem_iff
IsSelfAdjoint.star_mul_self
NonUnitalSubsemiringClass.mulMemClass
SubringClass.toSubsemiringClass
MulMemClass.coe_mul
StarMemClass.coe_star
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
IsUnit.val_inv_mul
mul_assoc
IsSelfAdjoint.mul_star_self
IsUnit.mul_val_inv
left_inv_eq_right_inv
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
StarAlgHom.instAlgHomClass
mem_spectrum_iff πŸ“–mathematicalβ€”Complex
Set
Set.instMembership
spectrum
StarSubalgebra
Complex.instCommSemiring
Complex.instStarRing
Ring.toSemiring
NormedRing.toRing
CStarAlgebra.toNormedRing
CStarAlgebra.toStarRing
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
SetLike.instMembership
setLike
SubringClass.toNormedRing
subringClass
Complex.commRing
algebra
β€”subringClass
not_iff_not
coe_isUnit
spectrum_eq πŸ“–mathematicalβ€”spectrum
Complex
StarSubalgebra
Complex.instCommSemiring
Complex.instStarRing
Ring.toSemiring
NormedRing.toRing
CStarAlgebra.toNormedRing
CStarAlgebra.toStarRing
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
SetLike.instMembership
setLike
SubringClass.toNormedRing
subringClass
Complex.commRing
algebra
β€”Set.ext
subringClass
mem_spectrum_iff

Unitary

Theorems

NameKindAssumesProvesValidatesDepends On
spectrum_subset_circle πŸ“–mathematicalβ€”Set
Set.instHasSubset
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real
Real.instOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
spectrum.of_subsingleton
mem_sphere_zero_iff_norm
le_antisymm
CStarRing.norm_coe_unitary
spectrum.norm_le_norm_of_mem
CStarRing.instNormOneClassOfNontrivial
spectrum.ne_zero_of_mem_of_unit
val_toUnits_apply
norm_inv
Set.mem_inv
spectrum.map_inv
inv_inv
CStarRing.norm_of_mem_unitary
inv_one
inv_le_of_inv_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_pos_iff

WeakDual.CharacterSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instStarHomClass πŸ“–mathematicalβ€”StarHomClass
Set.Elem
WeakDual
Complex
Complex.instCommSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
IsTopologicalSemiring.toContinuousAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NonUnitalCommCStarAlgebra.toNonUnitalNormedCommRing
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Algebra.toSMul
Algebra.id
Ring.uniformContinuousConstSMul
Complex.instRing
SeminormedAddCommGroup.to_isUniformAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
IsTopologicalSemiring.toContinuousMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NormedRing.toRing
CStarAlgebra.toNormedRing
NormedSpace.toModule
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
NonUnitalCStarAlgebra.toNormedSpace
NormedRing.toSeminormedRing
WeakDual.characterSpace
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
Complex.instStarRing
instFunLike
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
AlgHomClass.instStarHomClass
instAlgHomClass
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass

WeakDual.Complex

Theorems

NameKindAssumesProvesValidatesDepends On
instStarHomClass πŸ“–mathematicalβ€”StarHomClass
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
CStarAlgebra.toNormedRing
StarRing.toStarAddMonoid
CStarAlgebra.toStarRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NonUnitalCommCStarAlgebra.toNonUnitalNormedCommRing
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
instCommCStarAlgebraComplex
Complex.instStarRing
β€”AlgHom.apply_mem_spectrum
Complex.instNontrivial
selfAdjoint.val_re_map_spectrum
CStarAlgebra.toStarModule
RCLike.star_def
RCLike.conj_ofReal
instTrivialStarReal
StarModule.complexToReal
realPart_add_I_smul_imaginaryPart
StarAddMonoid.star_add
selfAdjoint.star_val_eq
StarModule.star_smul
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
AlgHom.instContinuousLinearMapClassOfAlgHomClass
CStarAlgebra.toCompleteSpace
map_smul
SemilinearMapClass.toMulActionSemiHomClass

selfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
mem_spectrum_eq_re πŸ“–mathematicalComplex
Set
Set.instMembership
spectrum
Complex.instCommSemiring
NormedRing.toRing
CStarAlgebra.toNormedRing
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
AddSubgroup
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CStarAlgebra.toStarRing
Complex.ofReal
Complex.re
β€”IsSelfAdjoint.mem_spectrum_eq_re
Subtype.prop
val_re_map_spectrum πŸ“–mathematicalβ€”spectrum
Complex
Complex.instCommSemiring
NormedRing.toRing
CStarAlgebra.toNormedRing
NormedAlgebra.toAlgebra
Complex.instNormedField
NormedRing.toSeminormedRing
CStarAlgebra.toNormedAlgebra
AddSubgroup
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalCStarAlgebra.toNonUnitalNormedRing
CStarAlgebra.toNonUnitalCStarAlgebra
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CStarAlgebra.toStarRing
Set.image
Real
Complex.ofReal
Complex.re
β€”IsSelfAdjoint.val_re_map_spectrum

spectrum

Theorems

NameKindAssumesProvesValidatesDepends On
norm_eq_one_of_unitary πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Set
Set.instMembership
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Norm.norm
NormedField.toNorm
Real
Real.instOne
β€”sub_zero
subset_circle_of_unitary
subset_circle_of_unitary πŸ“–mathematicalSubmonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Set
Set.instHasSubset
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real
Real.instOne
β€”Unitary.spectrum_subset_circle

unitary

Theorems

NameKindAssumesProvesValidatesDepends On
spectrum_subset_circle πŸ“–mathematicalβ€”Set
Set.instHasSubset
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real
Real.instOne
β€”Unitary.spectrum_subset_circle

---

← Back to Index