Documentation Verification Report

Normed

πŸ“ Source: Mathlib/Analysis/Calculus/BumpFunction/Normed.lean

Statistics

MetricCount
Definitions0
TheoremscontDiff_normed, continuous_normed, hasCompactSupport_normed, integrable, integrable_normed, integral_le_measure_closedBall, integral_normed, integral_normed_smul, integral_pos, measure_closedBall_div_le_integral, measure_closedBall_le_integral, nonneg_normed, normed_def, normed_le_div_measure_closedBall_rIn, normed_le_div_measure_closedBall_rOut, normed_neg, normed_sub, support_normed_eq, tendsto_support_normed_smallSets, tsupport_normed_eq
20
Total20

ContDiffBump

Theorems

NameKindAssumesProvesValidatesDepends On
contDiff_normed πŸ“–mathematicalβ€”ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
normed
β€”ContDiff.div_const
contDiff
continuous_normed πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.pseudoMetricSpace
normed
β€”Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous
hasCompactSupport_normed πŸ“–mathematicalβ€”HasCompactSupport
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
normed
β€”tsupport_normed_eq
FiniteDimensional.proper_real
integrable πŸ“–mathematicalβ€”MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
toFun
β€”Continuous.integrable_of_hasCompactSupport
BorelSpace.opensMeasurable
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
PseudoEMetricSpace.pseudoMetrizableSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
FiniteDimensional.proper_real
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
continuous
hasCompactSupport
integrable_normed πŸ“–mathematicalβ€”MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
normed
β€”MeasureTheory.Integrable.div_const
integrable
integral_le_measure_closedBall πŸ“–mathematicalβ€”Real
Real.instLE
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
toFun
MeasureTheory.Measure.real
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
rOut
β€”MeasureTheory.setIntegral_eq_integral_of_forall_compl_eq_zero
zero_of_le_dist
le_of_lt
MeasureTheory.setIntegral_mono
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.Integrable.integrableOn
integrable
enorm_one
NormedDivisionRing.to_normOneClass
NeZero.charZero_one
ENNReal.instCharZero
FiniteDimensional.proper_real
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
PseudoEMetricSpace.pseudoMetrizableSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
le_one
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.measureReal_restrict_apply
Set.univ_inter
mul_one
integral_normed πŸ“–mathematicalβ€”MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
normed
Real.instOne
β€”div_eq_mul_inv
mul_comm
MeasureTheory.integral_smul
NormedSpace.toNormSMulClass
Algebra.to_smulCommClass
inv_mul_cancelβ‚€
LT.lt.ne'
integral_pos
integral_normed_smul πŸ“–mathematicalβ€”MeasureTheory.integral
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
normed
β€”integral_smul_const
integral_normed
one_smul
integral_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
toFun
β€”MeasureTheory.integral_pos_iff_support_of_nonneg
nonneg'
integrable
support_eq
Metric.measure_ball_pos
rOut_pos
measure_closedBall_div_le_integral πŸ“–mathematicalReal
Real.instLE
rOut
Real.instMul
rIn
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.Measure.real
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Monoid.toNatPow
Real.instMonoid
Module.finrank
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
toFun
β€”rIn_pos
not_lt
LT.lt.le
mul_pos_iff
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
LT.lt.trans_le
rOut_pos
le_trans
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
pow_pos
Real.instZeroLEOneClass
MeasureTheory.Measure.addHaar_real_closedBall'
mul_assoc
mul_comm
mul_pow
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
MeasureTheory.measureReal_nonneg
measure_closedBall_le_integral
measure_closedBall_le_integral πŸ“–mathematicalβ€”Real
Real.instLE
MeasureTheory.Measure.real
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
rIn
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
toFun
β€”MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.measureReal_restrict_apply
Set.univ_inter
mul_one
MeasureTheory.setIntegral_congr_fun
measurableSet_closedBall
BorelSpace.opensMeasurable
one_of_mem_closedBall
MeasureTheory.setIntegral_le_integral
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
integrable
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
nonneg
nonneg_normed πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
normed
β€”div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
nonneg
MeasureTheory.integral_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
nonneg'
normed_def πŸ“–mathematicalβ€”normed
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
toFun
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
β€”β€”
normed_le_div_measure_closedBall_rIn πŸ“–mathematicalβ€”Real
Real.instLE
normed
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
MeasureTheory.Measure.real
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
rIn
β€”normed_def
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
le_one
ENNReal.toReal_pos
LT.lt.ne'
Metric.measure_closedBall_pos
rIn_pos
LT.lt.ne
MeasureTheory.measure_closedBall_lt_top
FiniteDimensional.proper_real
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
PseudoEMetricSpace.pseudoMetrizableSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
measure_closedBall_le_integral
normed_le_div_measure_closedBall_rOut πŸ“–mathematicalReal
Real.instLE
rOut
Real.instMul
rIn
normed
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Module.finrank
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
MeasureTheory.Measure.real
Metric.closedBall
β€”rIn_pos
not_lt
LT.lt.le
mul_pos_iff
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
LT.lt.trans_le
rOut_pos
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
le_one
integral_pos
MeasureTheory.Measure.IsAddHaarMeasure.toIsOpenPosMeasure
LE.le.trans
div_le_div_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
ENNReal.toReal_pos
LT.lt.ne'
Metric.measure_closedBall_pos
LT.lt.ne
MeasureTheory.measure_closedBall_lt_top
FiniteDimensional.proper_real
MeasureTheory.Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
one_mul
div_le_iffβ‚€'
pow_pos
Real.instZeroLEOneClass
measure_closedBall_div_le_integral
normed_neg πŸ“–mathematicalβ€”normed
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NegZeroClass.toNeg
β€”normed_def
neg
normed_sub πŸ“–mathematicalβ€”normed
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”normed_def
sub
support_normed_eq πŸ“–mathematicalβ€”Function.support
Real
Real.instZero
normed
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
rOut
β€”Function.support_div
support_eq
Function.support_const
LT.lt.ne'
integral_pos
Set.inter_univ
tendsto_support_normed_smallSets πŸ“–mathematicalFilter.Tendsto
Real
rOut
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set
Function.support
normed
Filter.smallSets
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Filter.HasBasis.tendsto_right_iff
Filter.HasBasis.smallSets
Metric.nhds_basis_ball
Filter.Eventually.mono
abs_eq_self
Real.instIsOrderedAddMonoid
LT.lt.le
rOut_pos
support_normed_eq
Metric.ball_subset_ball
tsupport_normed_eq πŸ“–mathematicalβ€”tsupport
Real
Real.instZero
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
normed
Metric.closedBall
rOut
β€”tsupport.eq_1
support_normed_eq
closure_ball
LT.lt.ne'
rOut_pos

---

← Back to Index