| Name | Category | Theorems |
HasFTaylorSeriesUpTo π | CompData | 10 mathmath: hasFTaylorSeriesUpToOn_univ_iff, hasFTaylorSeriesUpTo_zero_iff, ContinuousMultilinearMap.hasFTaylorSeriesUpTo_iteratedFDeriv, hasFTaylorSeriesUpTo_top_iff', hasFTaylorSeriesUpTo_succ_nat_iff_right, VectorFourier.hasFTaylorSeriesUpTo_fourierIntegral', ContDiff.ftaylorSeries, contDiff_iff_ftaylorSeries, hasFTaylorSeriesUpTo_top_iff, VectorFourier.hasFTaylorSeriesUpTo_fourierIntegral
|
HasFTaylorSeriesUpToOn π | CompData | 21 mathmath: AnalyticOn.exists_hasFTaylorSeriesUpToOn, hasFTaylorSeriesUpToOn_top_iff_right, hasFTaylorSeriesUpToOn_univ_iff, hasFTaylorSeriesUpToOn_empty, contDiffWithinAt_nat, contDiffWithinAt_iff_of_ne_infty, hasFTaylorSeriesUpToOn_pi', hasFTaylorSeriesUpToOn_top_iff', hasFTaylorSeriesUpToOn_zero_iff, hasFTaylorSeriesUpToOn_succ_iff_right, hasFTaylorSeriesUpToOn_top_iff, hasFTaylorSeriesUpToOn_succ_nat_iff_right, ContDiffWithinAt.eventually_hasFTaylorSeriesUpToOn, HasFTaylorSeriesUpTo.hasFTaylorSeriesUpToOn, hasFTaylorSeriesUpToOn_succ_iff_left, AnalyticOn.hasFTaylorSeriesUpToOn, AnalyticOnNhd.hasFTaylorSeriesUpToOn, ContDiffOn.ftaylorSeriesWithin, hasFTaylorSeriesUpToOn_top_iff_add, hasFTaylorSeriesUpToOn_pi, AnalyticWithinAt.exists_hasFTaylorSeriesUpToOn
|
ftaylorSeries π | CompOp | 5 mathmath: iteratedFDeriv_comp, ContDiff.ftaylorSeries, contDiff_iff_ftaylorSeries, AnalyticOnNhd.hasFTaylorSeriesUpToOn, ftaylorSeriesWithin_univ
|
ftaylorSeriesWithin π | CompOp | 7 mathmath: ftaylorSeriesWithin_insert, ContDiffWithinAt.eventually_hasFTaylorSeriesUpToOn, iteratedFDerivWithin_comp, AnalyticOn.hasFTaylorSeriesUpToOn, iteratedFDerivWithin_comp_of_eventually_mem, ContDiffOn.ftaylorSeriesWithin, ftaylorSeriesWithin_univ
|
iteratedFDeriv π | CompOp | 133 mathmath: fderiv_iteratedFDeriv, iteratedFDeriv_comp, ContDiffMapSupportedIn.norm_iteratedFDeriv_apply_le_seminorm, ContDiff.iteratedFDeriv_right, ContDiffMapSupportedIn.iteratedFDerivLM_apply, norm_iteratedFDeriv_mul_le, AnalyticOnNhd.iteratedFDeriv_of_isOpen, ContDiffMapSupportedIn.structureMapCLM_apply, bilinearIteratedFDerivTwo_eq_iteratedFDeriv, ContDiffPointwiseHolderAt.isBigO, SchwartzMap.decay', ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear_of_le_one, norm_iteratedFDeriv_clm_apply, tensorIteratedFDerivTwo_eq_iteratedFDeriv, AnalyticOnNhd.iteratedFDeriv, HasFPowerSeriesOnBall.hasSum_iteratedFDeriv, Function.HasTemperateGrowth.norm_iteratedFDeriv_le_uniform_aux, iteratedFDerivWithin_eq_iteratedFDeriv, iteratedFDerivWithin_of_isOpen, iteratedFDeriv_add_apply, ContDiffMapSupportedIn.seminorm_le_iff, iteratedFDeriv_sum, Function.hasTemperateGrowth_iff_isBigO, iteratedFDeriv_comp_sub, iteratedFDeriv_const_smul_apply, iteratedFDeriv_succ_const, ContDiffAt.iteratedFDeriv_right, CPolynomialOn.iteratedFDeriv, iteratedFDeriv_const_smul_apply', ContDiff.differentiable_iteratedFDeriv, HasFTaylorSeriesUpTo.eq_iteratedFDeriv, VectorFourier.iteratedFDeriv_fourierIntegral, isSymmSndFDerivAt_iff_iteratedFDeriv, AnalyticOn.domDomCongr_iteratedFDeriv, SchwartzMap.norm_iteratedFDeriv_le_seminorm, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, contDiff_iff_continuous_differentiable, iteratedFDeriv_comp_add_left, iteratedFDeriv_neg_apply, ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear, contDiffPointwiseHolderAt_iff, LinearIsometry.norm_iteratedFDeriv_comp_left, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, Function.HasTemperateGrowth.norm_iteratedFDeriv_le_uniform, iteratedFDeriv_add, iteratedFDeriv_eq_equiv_comp, iteratedDeriv_vcomp_three, ContinuousMultilinearMap.iteratedFDeriv_eq, ContDiffAt.restrictScalars_iteratedFDeriv_eventuallyEq, ContDiffAt.restrictScalars_iteratedFDeriv, norm_fderiv_iteratedFDeriv, ContinuousMultilinearMap.iteratedFDeriv_comp_diagonal, ContDiffMapSupportedIn.seminorm_le_iff_withOrder, iteratedDeriv_vcomp_eq_sum_orderedFinpartition, SchwartzMap.integral_pow_mul_iteratedFDeriv_le, iteratedDeriv_eq_equiv_comp, iteratedFDeriv_zero_apply, ContinuousLinearMap.norm_iteratedFDeriv_comp_left, ContDiff.continuous_iteratedFDeriv', SchwartzMap.le_seminorm, AnalyticOn.iteratedFDeriv_comp_perm, iteratedFDeriv_one_apply, ContinuousLinearEquiv.iteratedFDeriv_comp_left, HasFPowerSeriesOnBall.factorial_smul, iteratedFDeriv_succ_apply_right, LinearIsometryEquiv.norm_iteratedFDeriv_comp_right, IsSymmSndFDerivAt.iteratedFDeriv_cons, ContDiffMapSupportedIn.iteratedFDeriv_zero_on_compl, ContinuousMultilinearMap.norm_iteratedFDeriv_le, ContDiffAt.domDomCongr_iteratedFDeriv, iteratedFDeriv_comp_sub', support_iteratedFDeriv_subset, InnerProductSpace.laplacian_eq_iteratedFDeriv_stdOrthonormalBasis, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, iteratedFDeriv_smul_const_apply, HasCompactSupport.iteratedFDeriv, ContDiffMapSupportedIn.norm_iteratedFDeriv_apply_le_seminorm_withOrder, iteratedFDeriv_succ_eq_comp_right, SchwartzMap.iteratedPDeriv_eq_iteratedFDeriv, tsupport_iteratedFDeriv_subset, Real.iteratedFDeriv_fourier, ContDiff.continuous_iteratedFDeriv, iteratedFDeriv_comp_add_left', InnerProductSpace.laplacian_eq_iteratedFDeriv_complexPlane, ContDiff.iteratedFDeriv_right', iteratedFDerivWithin_zero_eq, norm_iteratedFDeriv_prod_le, contDiff_nat_iff_continuous_differentiable, SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv, ContDiffAt.iteratedFDeriv_comp_perm, iteratedDeriv_eq_iteratedFDeriv, iteratedFDeriv_comp_add_right, iteratedFDeriv_zero_fun, norm_iteratedFDeriv_one, iteratedFDeriv_zero_eq_comp, SchwartzMap.decay, iteratedFDeriv_prodMk, InnerProductSpace.laplacian_eq_iteratedFDeriv_orthonormalBasis, Filter.EventuallyEq.iteratedFDeriv, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum_of_completeSpace, Real.iteratedFDeriv_fourierIntegral, HasFPowerSeriesOnBall.iteratedFDeriv_zero_apply_diag, ContDiffMapSupportedIn.bounded_iteratedFDeriv, iteratedFDeriv_two_apply, iteratedFDeriv_comp_add_right', iteratedFDeriv_succ_eq_comp_left, ContDiffPointwiseHolderAt.iteratedFDeriv, ContDiffAt.continuousAt_iteratedFDeriv, iteratedFDeriv_apply_eq_iteratedDeriv_mul_prod, norm_iteratedFDeriv_smul_le, ContDiffAt.differentiableAt_iteratedFDeriv, iteratedDeriv_vcomp_two, ContinuousOn.continuousOn_iteratedFDeriv, iteratedFDeriv_clm_apply_const_apply, ContinuousLinearMap.iteratedFDeriv_comp_right, norm_iteratedFDeriv_zero, norm_iteratedFDeriv_eq_norm_iteratedDeriv, ContinuousLinearMap.iteratedFDeriv_comp_left, LinearIsometryEquiv.norm_iteratedFDeriv_comp_left, SchwartzMap.one_add_le_sup_seminorm_apply, SchwartzMap.integrable_pow_mul_iteratedFDeriv, iteratedFDeriv_neg, Function.HasTemperateGrowth.isBigO_uniform, ContDiffMapSupportedIn.structureMapLM_apply, iteratedFDerivWithin_univ, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum, norm_iteratedFDeriv_fderiv, Function.HasTemperateGrowth.isBigO, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply_of_le, iteratedFDeriv_add_apply', iteratedFDeriv_succ_apply_left, iteratedFDeriv_const_of_ne, norm_iteratedFDeriv_clm_apply_const
|
iteratedFDerivWithin π | CompOp | 103 mathmath: AnalyticOn.domDomCongr_iteratedFDerivWithin, norm_iteratedFDerivWithin_smul_le, iteratedFDerivWithin_eventually_congr_set, norm_iteratedFDerivWithin_one, iteratedFDerivWithin_succ_eq_comp_right, iteratedDerivWithin_vcomp_two, norm_iteratedFDerivWithin_clm_apply, dist_iteratedFDerivWithin_one, AnalyticOn.iteratedFDerivWithin, iteratedFDerivWithin_succ_eq_comp_left, contDiffOn_iff_continuousOn_differentiableOn, iteratedFDerivWithin_comp_add_right', AnalyticOn.iteratedFDerivWithin_comp_perm, iteratedFDerivWithin_succ_const, iteratedFDerivWithin_eq_iteratedFDeriv, norm_iteratedFDerivWithin_zero, iteratedFDerivWithin_of_isOpen, iteratedDerivWithin_eq_iteratedFDerivWithin, iteratedFDerivWithin_congr_set', ContinuousLinearMap.norm_iteratedFDerivWithin_comp_left, norm_iteratedFDerivWithin_clm_apply_const, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_complexPlane, ContDiffWithinAt.continuousWithinAt_iteratedFDerivWithin, tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin, iteratedFDerivWithin_comp_add_left, iteratedFDerivWithin_const_smul_apply, iteratedFDerivWithin_neg_apply, iteratedFDerivWithin_succ_apply_right, ContDiffOn.continuousOn_iteratedFDerivWithin, iteratedFDerivWithin_inter', contDiffOn_nat_iff_continuousOn_differentiableOn, ContinuousLinearEquiv.iteratedFDerivWithin_comp_right, iteratedFDerivWithin_smul_const_apply, iteratedFDerivWithin_eq_equiv_comp, ContDiffWithinAt.restrictScalars_iteratedFDerivWithin_eventuallyEq, Filter.EventuallyEq.iteratedFDerivWithin, ContinuousLinearMap.iteratedFDerivWithin_comp_left, ContinuousLinearMap.iteratedFDerivWithin_comp_right, iteratedFDerivWithin_one_apply, ContDiffWithinAt.domDomCongr_iteratedFDerivWithin, iteratedFDerivWithin_comp_sub, dist_iteratedFDerivWithin_zero, norm_iteratedFDerivWithin_prod_le, fderivWithin_iteratedFDerivWithin, LinearIsometryEquiv.norm_iteratedFDerivWithin_comp_left, iteratedFDerivWithin_two_apply', Filter.EventuallyEq.iteratedFDerivWithin', ContinuousOn.continuousOn_iteratedFDerivWithin, iteratedFDerivWithin_succ_apply_left, iteratedFDerivWithin_add_apply, iteratedFDerivWithin_prodMk, iteratedFDerivWithin_comp_add_right, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis, LinearIsometry.norm_iteratedFDerivWithin_comp_left, norm_fderivWithin_iteratedFDerivWithin, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_zero, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis, Set.EqOn.iteratedFDerivWithin, ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin, ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear, bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv, iteratedFDerivWithin_zero_eq, LinearIsometryEquiv.norm_iteratedFDerivWithin_comp_right, iteratedFDerivWithin_insert, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace, iteratedFDerivWithin_comp, iteratedFDerivWithin_comp_add_left', iteratedFDerivWithin_eventually_congr_set', HasFPowerSeriesWithinOnBall.iteratedFDerivWithin, ContDiffWithinAt.iteratedFDerivWithin_right, iteratedDerivWithin_eq_equiv_comp, iteratedFDerivWithin_two_apply, ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_of_le_one, iteratedFDerivWithin_zero_eq_comp, iteratedFDerivWithin_congr, HasFTaylorSeriesUpToOn.eq_iteratedFDerivWithin_of_uniqueDiffOn, iteratedFDerivWithin_comp_of_eventually_mem, iteratedFDerivWithin_inter, iteratedFDerivWithin_sum_apply, iteratedFDerivWithin_clm_apply_const_apply, isSymmSndFDerivWithinAt_iff_iteratedFDerivWithin, iteratedFDerivWithin_inter_open, ContDiffWithinAt.iteratedFDerivWithin_comp_perm, iteratedFDerivWithin_const_of_ne, norm_iteratedFDerivWithin_mul_le, iteratedDerivWithin_vcomp_eq_sum_orderedFinpartition, iteratedFDerivWithin_zero_fun, Filter.EventuallyEq.iteratedFDerivWithin_eq, norm_iteratedFDerivWithin_fderivWithin, iteratedFDerivWithin_apply_eq_iteratedDerivWithin_mul_prod, iteratedFDerivWithin_comp_sub', norm_iteratedFDerivWithin_eq_norm_iteratedDerivWithin, ContDiffOn.differentiableOn_iteratedFDerivWithin, ContinuousLinearEquiv.iteratedFDerivWithin_comp_left, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum, iteratedFDerivWithin_subset, iteratedFDerivWithin_zero_apply, iteratedFDerivWithin_univ, iteratedFDerivWithin_congr_set, iteratedFDerivWithin_add_apply', IsSymmSndFDerivWithinAt.iteratedFDerivWithin_cons, iteratedDerivWithin_vcomp_three, ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_aux
|