Documentation Verification Report

DSlope

πŸ“ Source: Mathlib/Analysis/Calculus/DSlope.lean

Statistics

MetricCount
Definitionsdslope
1
Theoremsof_dslope, dslope_comp, of_dslope, of_dslope, of_dslope, of_dslope, of_dslope, continuousAt_dslope_of_ne, continuousAt_dslope_same, continuousOn_dslope, continuousWithinAt_dslope_of_ne, differentiableAt_dslope_of_ne, differentiableOn_dslope_of_notMem, differentiableWithinAt_dslope_of_ne, dslope_eventuallyEq_slope_nhdsNE, dslope_eventuallyEq_slope_of_ne, dslope_of_ne, dslope_same, dslope_sub_smul, dslope_sub_smul_of_ne, eqOn_dslope_slope, eqOn_dslope_sub_smul, sub_smul_dslope
23
Total24

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
β€”β€”continuousWithinAt_univ
ContinuousWithinAt.of_dslope
continuousWithinAt

ContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
dslope_comp πŸ“–mathematicalDifferentiableAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
funLike
β€”eq_or_ne
dslope_same
HasDerivAt.deriv
HasFDerivAt.comp_hasDerivAt
hasFDerivAt
DifferentiableAt.hasDerivAt
dslope_of_ne
LinearMap.slope_comp

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
β€”β€”ContinuousWithinAt.of_dslope

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
β€”β€”add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
sub
IsTopologicalAddGroup.to_continuousSub
continuousWithinAt_id
continuousWithinAt_const
sub_smul_dslope
sub_add_cancel

DifferentiableAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”β€”differentiableWithinAt_univ
DifferentiableWithinAt.of_dslope
differentiableWithinAt

DifferentiableOn

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”DifferentiableOn
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”β€”DifferentiableWithinAt.of_dslope

DifferentiableWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_dslope πŸ“–β€”DifferentiableWithinAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”β€”sub_smul_dslope
sub_add_cancel
add_const
fun_smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
sub_const
differentiableWithinAt_id

(root)

Definitions

NameCategoryTheorems
dslope πŸ“–CompOp
23 mathmath: continuousOn_dslope, eqOn_dslope_sub_smul, Complex.differentiableOn_dslope, Real.sinc_eq_dslope, dslope_eventuallyEq_slope_nhdsNE, HasFPowerSeriesAt.eq_pow_order_mul_iterate_dslope, Complex.norm_dslope_le_div_of_mapsTo_ball, dslope_sub_smul, differentiableOn_dslope_of_notMem, continuousWithinAt_dslope_of_ne, continuousAt_dslope_same, dslope_sub_smul_of_ne, eqOn_dslope_slope, dslope_same, dslope_of_ne, differentiableWithinAt_dslope_of_ne, HasFPowerSeriesAt.has_fpower_series_iterate_dslope_fslope, dslope_eventuallyEq_slope_of_ne, ContinuousLinearMap.dslope_comp, sub_smul_dslope, HasFPowerSeriesAt.has_fpower_series_dslope_fslope, differentiableAt_dslope_of_ne, continuousAt_dslope_of_ne

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_dslope_of_ne πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
β€”continuousWithinAt_dslope_of_ne
continuousAt_dslope_same πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuousOn_dslope πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
ContinuousOn
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
β€”ContinuousOn.of_dslope
continuousAt_dslope_same
ContinuousOn.continuousAt
eq_or_ne
ContinuousAt.continuousWithinAt
continuousWithinAt_dslope_of_ne
continuousWithinAt_dslope_of_ne πŸ“–mathematicalβ€”ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dslope
β€”ContinuousWithinAt.of_dslope
continuousWithinAt_update_of_ne
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
ContinuousWithinAt.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ContinuousWithinAt.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousWithinAt.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousWithinAt_id
continuousWithinAt_const
sub_ne_zero
differentiableAt_dslope_of_ne πŸ“–mathematicalβ€”DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”differentiableWithinAt_dslope_of_ne
differentiableOn_dslope_of_notMem πŸ“–mathematicalSet
Set.instMembership
DifferentiableOn
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”differentiableWithinAt_dslope_of_ne
differentiableWithinAt_dslope_of_ne πŸ“–mathematicalβ€”DifferentiableWithinAt
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
β€”DifferentiableWithinAt.of_dslope
DifferentiableWithinAt.congr_of_eventuallyEq
DifferentiableWithinAt.smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
DifferentiableWithinAt.inv
DifferentiableWithinAt.sub_const
differentiableWithinAt_id
sub_ne_zero
Set.EqOn.eventuallyEq_of_mem
eqOn_dslope_slope
mem_nhdsWithin_of_mem_nhds
IsOpen.mem_nhds
isOpen_ne
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
dslope_of_ne
dslope_eventuallyEq_slope_nhdsNE πŸ“–mathematicalβ€”Filter.EventuallyEq
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
dslope
slope
NormedField.toField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
addGroupIsAddTorsor
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Set.EqOn.eventuallyEq_of_mem
eqOn_dslope_slope
self_mem_nhdsWithin
dslope_eventuallyEq_slope_of_ne πŸ“–mathematicalβ€”Filter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
dslope
slope
NormedField.toField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
addGroupIsAddTorsor
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Set.EqOn.eventuallyEq_of_mem
eqOn_dslope_slope
IsOpen.mem_nhds
isOpen_ne
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
dslope_of_ne πŸ“–mathematicalβ€”dslope
slope
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
addGroupIsAddTorsor
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Function.update_of_ne
dslope_same πŸ“–mathematicalβ€”dslope
deriv
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”Function.update_self
dslope_sub_smul πŸ“–mathematicalβ€”dslope
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Function.update
deriv
NormedAddCommGroup.toAddCommGroup
β€”Function.eq_update_iff
dslope_same
eqOn_dslope_sub_smul
dslope_sub_smul_of_ne πŸ“–mathematicalβ€”dslope
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”dslope_of_ne
slope_sub_smul
eqOn_dslope_slope πŸ“–mathematicalβ€”Set.EqOn
dslope
slope
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
addGroupIsAddTorsor
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”dslope_of_ne
eqOn_dslope_sub_smul πŸ“–mathematicalβ€”Set.EqOn
dslope
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”dslope_sub_smul_of_ne
sub_smul_dslope πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
dslope
β€”eq_or_ne
sub_self
dslope_same
zero_smul
dslope_of_ne
sub_smul_slope

---

← Back to Index