Documentation Verification Report

DiffContOnCl

πŸ“ Source: Mathlib/Analysis/Calculus/DiffContOnCl.lean

Statistics

MetricCount
DefinitionsDiffContOnCl
1
Theoremsadd, add_const, comp, const_add, const_smul, const_sub, continuousOn, continuousOn_ball, differentiableAt, differentiableAt', differentiableOn, inv, mk_ball, mono, neg, smul, smul_const, sub, sub_const, comp_diffContOnCl, diffContOnCl, diffContOnCl, diffContOnCl_ball, diffContOnCl_iff, diffContOnCl_const, diffContOnCl_univ
26
Total27

DiffContOnCl

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalDiffContOnClPi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”DifferentiableOn.add
differentiableOn
ContinuousOn.add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousOn
add_const πŸ“–mathematicalDiffContOnClAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”add
diffContOnCl_const
comp πŸ“–β€”DiffContOnCl
Set.MapsTo
β€”β€”DifferentiableOn.comp
differentiableOn
ContinuousOn.comp
continuousOn
Set.MapsTo.closure_of_continuousOn
const_add πŸ“–mathematicalDiffContOnClAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”add
diffContOnCl_const
const_smul πŸ“–mathematicalDiffContOnClFunction.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
β€”DifferentiableOn.const_smul
differentiableOn
ContinuousOn.const_smul
continuousOn
const_sub πŸ“–mathematicalDiffContOnClSubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub
diffContOnCl_const
continuousOn πŸ“–mathematicalDiffContOnClContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closure
β€”β€”
continuousOn_ball πŸ“–mathematicalDiffContOnCl
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.closedBall
β€”eq_or_ne
Metric.closedBall_zero
continuousOn_singleton
closure_ball
continuousOn
differentiableAt πŸ“–mathematicalDiffContOnCl
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set
Set.instMembership
DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
β€”DifferentiableOn.differentiableAt
differentiableOn
IsOpen.mem_nhds
differentiableAt' πŸ“–mathematicalDiffContOnCl
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
β€”DifferentiableOn.differentiableAt
differentiableOn
differentiableOn πŸ“–mathematicalDiffContOnClDifferentiableOn
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”β€”
inv πŸ“–mathematicalDiffContOnCl
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
Pi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
β€”DifferentiableOn.comp
differentiableOn_inv
differentiableOn
subset_closure
ContinuousOn.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn
mk_ball πŸ“–mathematicalDifferentiableOn
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
ContinuousOn
Metric.closedBall
DiffContOnClβ€”ContinuousOn.mono
Metric.closure_ball_subset_closedBall
mono πŸ“–β€”DiffContOnCl
Set
Set.instHasSubset
β€”β€”DifferentiableOn.mono
differentiableOn
ContinuousOn.mono
continuousOn
closure_mono
neg πŸ“–mathematicalDiffContOnClPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”DifferentiableOn.neg
differentiableOn
ContinuousOn.neg
IsTopologicalAddGroup.toContinuousNeg
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousOn
smul πŸ“–mathematicalDiffContOnCl
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAlgebra.toNormedSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”DifferentiableOn.smul
NormedSpace.toIsBoundedSMul
differentiableOn
ContinuousOn.smul
IsBoundedSMul.continuousSMul
continuousOn
smul_const πŸ“–mathematicalDiffContOnCl
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAlgebra.toNormedSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”smul
diffContOnCl_const
sub πŸ“–mathematicalDiffContOnClPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”DifferentiableOn.sub
differentiableOn
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousOn
sub_const πŸ“–mathematicalDiffContOnClSubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub
diffContOnCl_const

Differentiable

Theorems

NameKindAssumesProvesValidatesDepends On
comp_diffContOnCl πŸ“–β€”Differentiable
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DiffContOnCl
β€”β€”DiffContOnCl.comp
diffContOnCl
Set.mapsTo_image
diffContOnCl πŸ“–mathematicalDifferentiable
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DiffContOnClβ€”differentiableOn
Continuous.continuousOn
continuous
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul

DifferentiableOn

Theorems

NameKindAssumesProvesValidatesDepends On
diffContOnCl πŸ“–mathematicalDifferentiableOn
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
closure
DiffContOnClβ€”mono
subset_closure
continuousOn
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
diffContOnCl_ball πŸ“–mathematicalDifferentiableOn
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instHasSubset
Metric.closedBall
DiffContOnCl
Metric.ball
β€”DiffContOnCl.mk_ball
mono
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_closedBall
ContinuousOn.mono
continuousOn
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
diffContOnCl_iff πŸ“–mathematicalβ€”DiffContOnCl
DifferentiableOn
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”DiffContOnCl.differentiableOn
DifferentiableOn.continuousOn
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
closure_eq

(root)

Definitions

NameCategoryTheorems
DiffContOnCl πŸ“–CompData
9 mathmath: Differentiable.diffContOnCl, DifferentiableOn.diffContOnCl_ball, DiffContOnCl.mk_ball, diffContOnCl_const, Complex.HadamardThreeLines.diffContOnCl_interpStrip, DifferentiableOn.diffContOnCl, IsClosed.diffContOnCl_iff, Complex.HadamardThreeLines.diffContOnCl_invInterpStrip, diffContOnCl_univ

Theorems

NameKindAssumesProvesValidatesDepends On
diffContOnCl_const πŸ“–mathematicalβ€”DiffContOnClβ€”differentiableOn_const
continuousOn_const
diffContOnCl_univ πŸ“–mathematicalβ€”DiffContOnCl
Set.univ
Differentiable
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”IsClosed.diffContOnCl_iff
isClosed_univ
differentiableOn_univ

---

← Back to Index