Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Calculus/FDeriv/Basic.lean

Statistics

MetricCount
Definitions0
TheoremshasFDerivAt, hasFDerivWithinAt, continuous, differentiableAt, differentiableOn, comp_semilinearβ‚‚, continuousAt, differentiableWithinAt, fderivWithin, hasFDerivAt, isBigOTVS_sub, isBigO_sub, continuousOn, differentiableAt, eventually_differentiableAt, hasFDerivAt, iUnion_of_isOpen, mono, union_of_isOpen, congr_nhds, continuousWithinAt, differentiableAt, empty, hasFDerivWithinAt, insert, insert', isBigOTVS_sub, isBigO_sub, mono, mono_of_mem_nhdsWithin, of_finite, of_insert, of_subsingleton, singleton, comp_semilinear, continuousAt, differentiableAt, fderiv, hasFDerivAtFilter, hasFDerivWithinAt, isBigOTVS_sub, isBigO_sub, le_of_lip', le_of_lipschitz, le_of_lipschitzOn, lim, unique, isBigOTVS_sub, isBigO_sub, isEquivalent_sub, isThetaTVS_sub, isTheta_sub, mono, tendsto_nhds, continuousWithinAt, differentiableWithinAt, empty, fderivWithin, hasFDerivAt, hasFDerivAt_of_univ, insert, insert', isBigOTVS_sub, isBigO_sub, lim, mono, mono_of_mem_nhdsWithin, of_finite, of_insert, of_notMem_closure, of_not_accPt, of_subsingleton, singleton, union, unique_on, continuousAt, differentiableAt, exists_lipschitzOnWith, exists_lipschitzOnWith_of_nnnorm_lt, hasFDerivAt, isBigOTVS_sub, isBigO_sub, isEquivalent_sub, isThetaTVS_sub, isTheta_sub, eq, eq, differentiableAt_fun_id, differentiableAt_id, differentiableOn_empty, differentiableOn_iUnion_iff_of_isOpen, differentiableOn_id, differentiableOn_of_locally_differentiableOn, differentiableOn_union_iff_of_isOpen, differentiableOn_univ, differentiableWithinAt_congr_nhds, differentiableWithinAt_id, differentiableWithinAt_id', differentiableWithinAt_insert, differentiableWithinAt_insert_self, differentiableWithinAt_inter, differentiableWithinAt_inter', differentiableWithinAt_univ, differentiable_fun_id, differentiable_id, differentiable_of_differentiableOn_iUnion_of_isOpen, differentiable_of_differentiableOn_union_of_isOpen, fderivWithin_eq_fderiv, fderivWithin_id, fderivWithin_id', fderivWithin_inter, fderivWithin_mem_iff, fderivWithin_of_isOpen, fderivWithin_of_mem_nhds, fderivWithin_of_mem_nhdsWithin, fderivWithin_subset, fderivWithin_zero_of_notMem_closure, fderivWithin_zero_of_not_accPt, fderiv_eq, fderiv_id, fderiv_id', fderiv_mem_iff, fderiv_zero_of_not_differentiableAt, hasFDerivAtFilter_id, hasFDerivAtFilter_iff_tendsto, hasFDerivAt_id, hasFDerivAt_iff_isLittleO_nhds_zero, hasFDerivAt_iff_tendsto, hasFDerivWithinAt_diff_singleton, hasFDerivWithinAt_diff_singleton_self, hasFDerivWithinAt_id, hasFDerivWithinAt_iff_tendsto, hasFDerivWithinAt_insert, hasFDerivWithinAt_insert_self, hasFDerivWithinAt_inter, hasFDerivWithinAt_inter', hasFDerivWithinAt_of_isOpen, hasFDerivWithinAt_of_mem_nhds, hasFDerivWithinAt_univ, hasStrictFDerivAt_id, norm_fderiv_le_of_lip', norm_fderiv_le_of_lipschitz, norm_fderiv_le_of_lipschitzOn
143
Total143

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
hasFDerivAt πŸ“–mathematicalAsymptotics.IsBigO
Real
NormedAddCommGroup.toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
HasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.zero
β€”HasFDerivWithinAt.hasFDerivAt_of_univ
hasFDerivWithinAt
nhdsWithin_univ
Set.mem_univ
hasFDerivWithinAt πŸ“–mathematicalAsymptotics.IsBigO
Real
NormedAddCommGroup.toNorm
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Set
Set.instMembership
HasFDerivWithinAt
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.zero
β€”eq_zero_of_norm_pow_within
LT.lt.ne_bot
sub_zero
trans_isLittleO
Asymptotics.IsLittleO.mono
Asymptotics.isLittleO_pow_sub_sub
nhdsWithin_le_nhds

Differentiable

Theorems

NameKindAssumesProvesValidatesDepends On
continuous πŸ“–mathematicalDifferentiableContinuousβ€”continuous_iff_continuousAt
DifferentiableAt.continuousAt
differentiableAt πŸ“–mathematicalDifferentiableDifferentiableAtβ€”β€”
differentiableOn πŸ“–mathematicalDifferentiableDifferentiableOnβ€”DifferentiableOn.mono
differentiableOn_univ
Set.subset_univ

DifferentiableAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_semilinearβ‚‚ πŸ“–β€”DifferentiableAt
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
β€”β€”HasFDerivAt.differentiableAt
RingHomInvPair.triplesβ‚‚
RingHomCompTriple.right_ids
HasFDerivAt.comp_semilinear
hasFDerivAt
continuousAt πŸ“–mathematicalDifferentiableAtContinuousAtβ€”HasFDerivAt.continuousAt
differentiableWithinAt πŸ“–mathematicalDifferentiableAtDifferentiableWithinAtβ€”DifferentiableWithinAt.mono
differentiableWithinAt_univ
Set.subset_univ
fderivWithin πŸ“–mathematicalDifferentiableAt
UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
fderivWithin
fderiv
β€”HasFDerivWithinAt.fderivWithin
HasFDerivAt.hasFDerivWithinAt
hasFDerivAt
hasFDerivAt πŸ“–mathematicalDifferentiableAtHasFDerivAt
fderiv
β€”fderiv_def
hasFDerivWithinAt_univ
DifferentiableWithinAt.hasFDerivWithinAt
differentiableWithinAt_univ
isBigOTVS_sub πŸ“–mathematicalDifferentiableAtAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
nhds
SubNegMonoid.toSub
β€”HasFDerivAt.isBigOTVS_sub
hasFDerivAt
isBigO_sub πŸ“–mathematicalDifferentiableAt
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhds
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”HasFDerivAt.isBigO_sub
hasFDerivAt

DifferentiableOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn πŸ“–mathematicalDifferentiableOnContinuousOnβ€”DifferentiableWithinAt.continuousWithinAt
differentiableAt πŸ“–mathematicalDifferentiableOn
Set
Filter
Filter.instMembership
nhds
DifferentiableAtβ€”HasFDerivAt.differentiableAt
hasFDerivAt
eventually_differentiableAt πŸ“–mathematicalDifferentiableOn
Set
Filter
Filter.instMembership
nhds
Filter.Eventually
DifferentiableAt
β€”Filter.Eventually.mono
eventually_eventually_nhds
differentiableAt
hasFDerivAt πŸ“–mathematicalDifferentiableOn
Set
Filter
Filter.instMembership
nhds
HasFDerivAt
fderiv
β€”DifferentiableAt.hasFDerivAt
DifferentiableWithinAt.differentiableAt
mem_of_mem_nhds
iUnion_of_isOpen πŸ“–mathematicalDifferentiableOn
IsOpen
Set.iUnionβ€”DifferentiableAt.differentiableWithinAt
differentiableAt
IsOpen.mem_nhds
mono πŸ“–β€”DifferentiableOn
Set
Set.instHasSubset
β€”β€”DifferentiableWithinAt.mono
union_of_isOpen πŸ“–mathematicalDifferentiableOn
IsOpen
Set
Set.instUnion
β€”DifferentiableAt.differentiableWithinAt
DifferentiableWithinAt.differentiableAt
IsOpen.mem_nhds

DifferentiableWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
congr_nhds πŸ“–β€”DifferentiableWithinAt
nhdsWithin
β€”β€”mono_of_mem_nhdsWithin
self_mem_nhdsWithin
continuousWithinAt πŸ“–mathematicalDifferentiableWithinAtContinuousWithinAtβ€”HasFDerivWithinAt.continuousWithinAt
differentiableAt πŸ“–mathematicalDifferentiableWithinAt
Set
Filter
Filter.instMembership
nhds
DifferentiableAtβ€”HasFDerivWithinAt.hasFDerivAt
empty πŸ“–mathematicalβ€”DifferentiableWithinAt
Set
Set.instEmptyCollection
β€”HasFDerivWithinAt.empty
hasFDerivWithinAt πŸ“–mathematicalDifferentiableWithinAtHasFDerivWithinAt
fderivWithin
β€”fderivWithin_def
insert πŸ“–mathematicalDifferentiableWithinAtSet
Set.instInsert
β€”differentiableWithinAt_insert_self
insert' πŸ“–mathematicalDifferentiableWithinAtSet
Set.instInsert
β€”differentiableWithinAt_insert
isBigOTVS_sub πŸ“–mathematicalDifferentiableWithinAtAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
nhdsWithin
SubNegMonoid.toSub
β€”HasFDerivWithinAt.isBigOTVS_sub
hasFDerivWithinAt
isBigO_sub πŸ“–mathematicalDifferentiableWithinAt
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhdsWithin
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”HasFDerivWithinAt.isBigO_sub
hasFDerivWithinAt
mono πŸ“–β€”DifferentiableWithinAt
Set
Set.instHasSubset
β€”β€”HasFDerivWithinAt.mono
mono_of_mem_nhdsWithin πŸ“–β€”DifferentiableWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
β€”β€”HasFDerivWithinAt.differentiableWithinAt
HasFDerivWithinAt.mono_of_mem_nhdsWithin
hasFDerivWithinAt
of_finite πŸ“–mathematicalβ€”DifferentiableWithinAtβ€”HasFDerivWithinAt.of_finite
of_insert πŸ“–β€”DifferentiableWithinAt
Set
Set.instInsert
β€”β€”mono
Set.subset_insert
of_subsingleton πŸ“–mathematicalSet.SubsingletonDifferentiableWithinAtβ€”of_finite
Set.Subsingleton.finite
singleton πŸ“–mathematicalβ€”DifferentiableWithinAt
Set
Set.instSingletonSet
β€”HasFDerivWithinAt.singleton

HasFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_semilinear πŸ“–mathematicalHasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
ContinuousLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
RingHomInvPair.triplesβ‚‚
RingHomCompTriple.right_ids
β€”RingHomIsometric.inv
RingHomInvPair.triplesβ‚‚
RingHomCompTriple.right_ids
hasFDerivAt_iff_isLittleO_nhds_zero
Asymptotics.IsLittleO.comp_tendsto
ContinuousAt.tendsto
Continuous.continuousAt
ContinuousLinearMap.continuous
ContinuousLinearMap.map_zero
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Asymptotics.IsLittleO.trans_isBigO
Asymptotics.IsBigO.trans_isLittleO
ContinuousLinearMap.isBigO_comp
ContinuousLinearMap.isBigO_id
continuousAt πŸ“–mathematicalHasFDerivAtContinuousAtβ€”HasFDerivAtFilter.tendsto_nhds
le_rfl
differentiableAt πŸ“–mathematicalHasFDerivAtDifferentiableAtβ€”β€”
fderiv πŸ“–mathematicalHasFDerivAtfderivβ€”ContinuousLinearMap.ext
unique
DifferentiableAt.hasFDerivAt
differentiableAt
hasFDerivAtFilter πŸ“–mathematicalHasFDerivAt
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
HasFDerivAtFilterβ€”HasFDerivAtFilter.mono
hasFDerivWithinAt πŸ“–mathematicalHasFDerivAtHasFDerivWithinAtβ€”hasFDerivAtFilter
inf_le_left
isBigOTVS_sub πŸ“–mathematicalHasFDerivAtAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
nhds
SubNegMonoid.toSub
β€”HasFDerivAtFilter.isBigOTVS_sub
isBigO_sub πŸ“–mathematicalHasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhds
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsBigOTVS.isBigO
isBigOTVS_sub
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
le_of_lip' πŸ“–mathematicalHasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real
Real.instLE
Real.instZero
Filter.Eventually
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instMul
nhds
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.hasOpNorm
β€”le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ContinuousLinearMap.opNorm_le_of_nhds_zero
RingHomIsometric.ids
add_nonneg
LT.lt.le
Filter.mp_mem
Filter.eventually_map
map_add_left_nhds_zero
SeminormedAddCommGroup.toIsTopologicalAddGroup
Asymptotics.isLittleO_iff
hasFDerivAt_iff_isLittleO_nhds_zero
Filter.univ_mem'
norm_le_insert
add_le_add
covariant_swap_add_of_covariant_add
add_sub_cancel_left
add_mul
Distrib.rightDistribClass
le_of_lipschitz πŸ“–mathematicalHasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
LipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.hasOpNorm
NNReal.toReal
β€”le_of_lipschitzOn
Filter.univ_mem
lipschitzOnWith_univ
le_of_lipschitzOn πŸ“–mathematicalHasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Filter
Filter.instMembership
nhds
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.hasOpNorm
NNReal.toReal
β€”le_of_lip'
NNReal.coe_nonneg
Filter.mp_mem
Filter.univ_mem'
LipschitzOnWith.norm_sub_le
mem_of_mem_nhds
lim πŸ“–mathematicalHasFDerivAt
Filter.Tendsto
Real
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
Filter.atTop
Real.instPreorder
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
nhds
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”HasFDerivWithinAt.lim
hasFDerivWithinAt_univ
zero_smul
Filter.Tendsto.smul
Filter.Tendsto.comp
Filter.tendsto_invβ‚€_cobounded
tendsto_norm_atTop_iff_cobounded
tendsto_const_nhds
Filter.Eventually.of_forall
Set.mem_univ
tendsto_nhds_of_eventually_eq
Filter.Eventually.mono
eventually_ne_of_tendsto_norm_atTop
smul_inv_smulβ‚€
unique πŸ“–β€”HasFDerivAtβ€”β€”UniqueDiffWithinAt.eq
uniqueDiffWithinAt_univ
NormedField.nhdsNE_neBot
nhdsWithin_univ
eq_1

HasFDerivAtFilter

Theorems

NameKindAssumesProvesValidatesDepends On
isBigOTVS_sub πŸ“–mathematicalHasFDerivAtFilterAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
sub_add_cancel
Asymptotics.IsBigOTVS.fun_add
Asymptotics.IsLittleOTVS.isBigOTVS
isLittleOTVS
ContinuousLinearMap.isBigOTVS_comp
isBigO_sub πŸ“–mathematicalHasFDerivAtFilter
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsBigOTVS.isBigO
isBigOTVS_sub
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
isEquivalent_sub πŸ“–mathematicalHasFDerivAtFilter
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsEquivalent
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddCommGroup.toAddGroup
β€”Asymptotics.IsEquivalent.eq_1
Asymptotics.isLittleOTVS_iff_isLittleO
Asymptotics.IsLittleOTVS.trans_isBigOTVS
isLittleOTVS
Asymptotics.IsThetaTVS.isBigOTVS
Asymptotics.IsThetaTVS.symm
ContinuousLinearMap.isThetaTVS_comp
isThetaTVS_sub πŸ“–mathematicalHasFDerivAtFilter
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsThetaTVS
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toSub
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsThetaTVS.trans
Asymptotics.IsTheta.isThetaTVS
Asymptotics.IsEquivalent.isTheta
isEquivalent_sub
ContinuousLinearMap.isThetaTVS_comp
isTheta_sub πŸ“–mathematicalHasFDerivAtFilter
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsTheta
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsThetaTVS.isTheta
isThetaTVS_sub
mono πŸ“–β€”HasFDerivAtFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Asymptotics.IsLittleOTVS.mono
isLittleOTVS
tendsto_nhds πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
HasFDerivAtFilter
Filter.Tendstoβ€”Asymptotics.IsBigOTVS.trans_isLittleOTVS
isBigOTVS_sub
Asymptotics.isLittleOTVS_one
sub_eq_add_neg
add_neg_cancel
Filter.Tendsto.add_const
Filter.tendsto_id'
sub_add_cancel
zero_add

HasFDerivWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
continuousWithinAt πŸ“–mathematicalHasFDerivWithinAtContinuousWithinAtβ€”HasFDerivAtFilter.tendsto_nhds
inf_le_left
differentiableWithinAt πŸ“–mathematicalHasFDerivWithinAtDifferentiableWithinAtβ€”β€”
empty πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instEmptyCollection
β€”nhdsWithin_empty
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
fderivWithin πŸ“–mathematicalHasFDerivWithinAt
UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
fderivWithinβ€”UniqueDiffWithinAt.eq
DifferentiableWithinAt.hasFDerivWithinAt
differentiableWithinAt
hasFDerivAt πŸ“–mathematicalHasFDerivWithinAt
Set
Filter
Filter.instMembership
nhds
HasFDerivAtβ€”hasFDerivWithinAt_univ
hasFDerivWithinAt_inter
Set.univ_inter
hasFDerivAt_of_univ πŸ“–mathematicalHasFDerivWithinAt
Set.univ
HasFDerivAtβ€”hasFDerivWithinAt_univ
insert πŸ“–mathematicalHasFDerivWithinAtSet
Set.instInsert
β€”hasFDerivWithinAt_insert_self
insert' πŸ“–mathematicalHasFDerivWithinAtSet
Set.instInsert
β€”hasFDerivWithinAt_insert
isBigOTVS_sub πŸ“–mathematicalHasFDerivWithinAtAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
nhdsWithin
SubNegMonoid.toSub
β€”HasFDerivAtFilter.isBigOTVS_sub
isBigO_sub πŸ“–mathematicalHasFDerivWithinAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhdsWithin
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsBigOTVS.isBigO
isBigOTVS_sub
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
lim πŸ“–mathematicalHasFDerivWithinAt
Filter.Tendsto
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Filter.Eventually
Set
Set.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
SubNegMonoid.toSub
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”tendsto_nhdsWithin_iff
add_zero
Filter.Tendsto.add
tendsto_const_nhds
smul_sub
map_smul
SemilinearMapClass.toMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
map_add
SemilinearMapClass.toAddHomClass
add_sub_cancel_left
Asymptotics.IsLittleOTVS.smul_left
Asymptotics.IsLittleOTVS.comp_tendsto
HasFDerivAtFilter.isLittleOTVS
Asymptotics.Filter.Tendsto.isBigOTVS_one
sub_add_cancel
zero_add
Asymptotics.isLittleOTVS_one
Filter.Tendsto.comp
Continuous.tendsto
ContinuousMapClass.map_continuous
ContinuousSemilinearMapClass.toContinuousMapClass
mono πŸ“–β€”HasFDerivWithinAt
Set
Set.instHasSubset
β€”β€”HasFDerivAtFilter.mono
nhdsWithin_mono
mono_of_mem_nhdsWithin πŸ“–β€”HasFDerivWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
β€”β€”HasFDerivAtFilter.mono
nhdsWithin_le_iff
of_finite πŸ“–mathematicalβ€”HasFDerivWithinAtβ€”Set.Finite.induction_on
empty
insert'
of_insert πŸ“–β€”HasFDerivWithinAt
Set
Set.instInsert
β€”β€”mono
Set.subset_insert
of_notMem_closure πŸ“–mathematicalSet
Set.instMembership
closure
HasFDerivWithinAtβ€”of_not_accPt
ClusterPt.mem_closure
AccPt.clusterPt
of_not_accPt πŸ“–mathematicalAccPt
Filter.principal
HasFDerivWithinAtβ€”hasFDerivWithinAt_diff_singleton_self
eq_1
Filter.not_neBot
accPt_principal_iff_nhdsWithin
hasFDerivAtFilter_iff_isLittleOTVS
Asymptotics.IsLittleOTVS.bot
of_subsingleton πŸ“–mathematicalSet.SubsingletonHasFDerivWithinAtβ€”of_finite
Set.Subsingleton.finite
singleton πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instSingletonSet
β€”of_finite
Set.finite_singleton
union πŸ“–mathematicalHasFDerivWithinAtSet
Set.instUnion
β€”nhdsWithin_union
Asymptotics.IsLittleOTVS.sup
HasFDerivAtFilter.isLittleOTVS
unique_on πŸ“–mathematicalHasFDerivWithinAtSet.EqOn
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”exists_fun_of_mem_tangentConeAt
tendsto_nhds_unique
lim

HasStrictFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt πŸ“–mathematicalHasStrictFDerivAtContinuousAtβ€”HasFDerivAt.continuousAt
hasFDerivAt
differentiableAt πŸ“–mathematicalHasStrictFDerivAtDifferentiableAtβ€”HasFDerivAt.differentiableAt
hasFDerivAt
exists_lipschitzOnWith πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Filter
Filter.instMembership
nhds
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”RingHomIsometric.ids
exists_lipschitzOnWith_of_nnnorm_lt
NoMaxOrder.exists_gt
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
exists_lipschitzOnWith_of_nnnorm_lt πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Set
Filter
Filter.instMembership
nhds
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”RingHomIsometric.ids
Asymptotics.IsLittleO.add_isBigOWith
isLittleO
ContinuousLinearMap.isBigOWith_comp
exists_nhds_square
sub_add_cancel
Asymptotics.IsBigOWith_def
IsOpen.mem_nhds
lipschitzOnWith_iff_norm_sub_le
Set.mk_mem_prod
hasFDerivAt πŸ“–mathematicalHasStrictFDerivAtHasFDerivAtβ€”Asymptotics.IsLittleOTVS.comp_tendsto
isLittleOTVS
Filter.Tendsto.prodMk_nhds
Filter.tendsto_id
tendsto_const_nhds
isBigOTVS_sub πŸ“–mathematicalHasStrictFDerivAtAsymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
nhds
instTopologicalSpaceProd
SubNegMonoid.toSub
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
sub_add_cancel
Asymptotics.IsBigOTVS.fun_add
Asymptotics.IsLittleOTVS.isBigOTVS
isLittleOTVS
ContinuousLinearMap.isBigOTVS_comp
isBigO_sub πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhds
instTopologicalSpaceProd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsBigOTVS.isBigO
isBigOTVS_sub
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
isEquivalent_sub πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsEquivalent
nhds
instTopologicalSpaceProd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddCommGroup.toAddGroup
β€”Asymptotics.IsEquivalent.eq_1
Asymptotics.isLittleOTVS_iff_isLittleO
Asymptotics.IsLittleOTVS.trans_isBigOTVS
isLittleOTVS
Asymptotics.IsThetaTVS.isBigOTVS
Asymptotics.IsThetaTVS.symm
ContinuousLinearMap.isThetaTVS_comp
isThetaTVS_sub πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsThetaTVS
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
nhds
instTopologicalSpaceProd
SubNegMonoid.toSub
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsThetaTVS.trans
Asymptotics.IsTheta.isThetaTVS
Asymptotics.IsEquivalent.isTheta
isEquivalent_sub
ContinuousLinearMap.isThetaTVS_comp
isTheta_sub πŸ“–mathematicalHasStrictFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Topology.IsInducing
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
Asymptotics.IsTheta
NormedAddCommGroup.toNorm
nhds
instTopologicalSpaceProd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Asymptotics.IsThetaTVS.isTheta
isThetaTVS_sub

UniqueDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–β€”UniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Set
Set.instMembership
HasFDerivWithinAt
β€”β€”UniqueDiffWithinAt.eq

UniqueDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–β€”UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
HasFDerivWithinAt
β€”β€”ContinuousLinearMap.ext_on
dense_tangentConeAt
HasFDerivWithinAt.unique_on

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableAt_fun_id πŸ“–mathematicalβ€”DifferentiableAtβ€”HasFDerivAt.differentiableAt
hasFDerivAt_id
differentiableAt_id πŸ“–mathematicalβ€”DifferentiableAtβ€”HasFDerivAt.differentiableAt
hasFDerivAt_id
differentiableOn_empty πŸ“–mathematicalβ€”DifferentiableOn
Set
Set.instEmptyCollection
β€”β€”
differentiableOn_iUnion_iff_of_isOpen πŸ“–mathematicalIsOpenDifferentiableOn
Set.iUnion
β€”DifferentiableOn.mono
Set.subset_iUnion_of_subset
DifferentiableOn.iUnion_of_isOpen
differentiableOn_id πŸ“–mathematicalβ€”DifferentiableOnβ€”Differentiable.differentiableOn
differentiable_id
differentiableOn_of_locally_differentiableOn πŸ“–β€”IsOpen
Set
Set.instMembership
DifferentiableOn
Set.instInter
β€”β€”differentiableWithinAt_inter
IsOpen.mem_nhds
differentiableOn_union_iff_of_isOpen πŸ“–mathematicalIsOpenDifferentiableOn
Set
Set.instUnion
β€”DifferentiableOn.mono
Set.subset_union_left
Set.subset_union_right
DifferentiableOn.union_of_isOpen
differentiableOn_univ πŸ“–mathematicalβ€”DifferentiableOn
Set.univ
Differentiable
β€”β€”
differentiableWithinAt_congr_nhds πŸ“–mathematicalnhdsWithinDifferentiableWithinAtβ€”DifferentiableWithinAt.congr_nhds
differentiableWithinAt_id πŸ“–mathematicalβ€”DifferentiableWithinAtβ€”DifferentiableAt.differentiableWithinAt
differentiableAt_id
differentiableWithinAt_id' πŸ“–mathematicalβ€”DifferentiableWithinAtβ€”differentiableWithinAt_id
differentiableWithinAt_insert πŸ“–mathematicalβ€”DifferentiableWithinAt
Set
Set.instInsert
β€”β€”
differentiableWithinAt_insert_self πŸ“–mathematicalβ€”DifferentiableWithinAt
Set
Set.instInsert
β€”DifferentiableWithinAt.mono
Set.subset_insert
HasFDerivWithinAt.differentiableWithinAt
HasFDerivWithinAt.insert
DifferentiableWithinAt.hasFDerivWithinAt
differentiableWithinAt_inter πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
DifferentiableWithinAt
Set.instInter
β€”hasFDerivWithinAt_inter
differentiableWithinAt_inter' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
DifferentiableWithinAt
Set.instInter
β€”hasFDerivWithinAt_inter'
differentiableWithinAt_univ πŸ“–mathematicalβ€”DifferentiableWithinAt
Set.univ
DifferentiableAt
β€”β€”
differentiable_fun_id πŸ“–mathematicalβ€”Differentiableβ€”differentiableAt_id
differentiable_id πŸ“–mathematicalβ€”Differentiableβ€”differentiableAt_id
differentiable_of_differentiableOn_iUnion_of_isOpen πŸ“–mathematicalDifferentiableOn
IsOpen
Set.iUnion
Set.univ
Differentiableβ€”differentiableOn_univ
DifferentiableOn.iUnion_of_isOpen
differentiable_of_differentiableOn_union_of_isOpen πŸ“–mathematicalDifferentiableOn
Set
Set.instUnion
Set.univ
IsOpen
Differentiableβ€”differentiableOn_univ
DifferentiableOn.union_of_isOpen
fderivWithin_eq_fderiv πŸ“–mathematicalUniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DifferentiableAt
fderivWithin
fderiv
β€”fderivWithin_univ
fderivWithin_subset
Set.subset_univ
DifferentiableAt.differentiableWithinAt
fderivWithin_id πŸ“–mathematicalUniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
fderivWithin
ContinuousLinearMap.id
AddCommGroup.toAddCommMonoid
β€”DifferentiableAt.fderivWithin
differentiableAt_id
fderiv_id
fderivWithin_id' πŸ“–mathematicalUniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
fderivWithin
ContinuousLinearMap.id
AddCommGroup.toAddCommMonoid
β€”fderivWithin_id
fderivWithin_inter πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
fderivWithin
Set.instInter
β€”hasFDerivWithinAt_inter
fderivWithin_def
fderivWithin_mem_iff πŸ“–mathematicalβ€”ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
fderivWithin
DifferentiableWithinAt
ContinuousLinearMap.zero
β€”fderivWithin_zero_of_not_differentiableWithinAt
fderivWithin_of_isOpen πŸ“–mathematicalIsOpen
Set
Set.instMembership
fderivWithin
fderiv
β€”fderivWithin_of_mem_nhds
IsOpen.mem_nhds
fderivWithin_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
fderivWithin
fderiv
β€”fderivWithin_univ
Set.univ_inter
fderivWithin_inter
fderivWithin_of_mem_nhdsWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DifferentiableWithinAt
fderivWithinβ€”HasFDerivWithinAt.fderivWithin
HasFDerivWithinAt.mono_of_mem_nhdsWithin
DifferentiableWithinAt.hasFDerivWithinAt
fderivWithin_subset πŸ“–mathematicalSet
Set.instHasSubset
UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DifferentiableWithinAt
fderivWithinβ€”fderivWithin_of_mem_nhdsWithin
nhdsWithin_mono
self_mem_nhdsWithin
fderivWithin_zero_of_notMem_closure πŸ“–mathematicalSet
Set.instMembership
closure
fderivWithin
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_zero_of_not_accPt
ClusterPt.mem_closure
AccPt.clusterPt
fderivWithin_zero_of_not_accPt πŸ“–mathematicalAccPt
Filter.principal
fderivWithin
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_def
HasFDerivWithinAt.of_not_accPt
fderiv_eq πŸ“–mathematicalHasFDerivAtfderivβ€”HasFDerivAt.fderiv
fderiv_id πŸ“–mathematicalβ€”fderiv
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”HasFDerivAt.fderiv
hasFDerivAt_id
fderiv_id' πŸ“–mathematicalβ€”fderiv
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”fderiv_id
fderiv_mem_iff πŸ“–mathematicalβ€”ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
fderiv
DifferentiableAt
ContinuousLinearMap.zero
β€”fderiv_zero_of_not_differentiableAt
fderiv_zero_of_not_differentiableAt πŸ“–mathematicalDifferentiableAtfderiv
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_def
fderivWithin_zero_of_not_differentiableWithinAt
differentiableWithinAt_univ
hasFDerivAtFilter_id πŸ“–mathematicalβ€”HasFDerivAtFilter
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”Asymptotics.IsLittleOTVS.congr_left
Asymptotics.IsLittleOTVS.zero
sub_self
hasFDerivAtFilter_iff_tendsto πŸ“–mathematicalβ€”HasFDerivAtFilter
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.Tendsto
Real
Real.instMul
Real.instInv
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
nhds
Real.pseudoMetricSpace
Real.instZero
β€”sub_eq_zero
norm_eq_zero
sub_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
norm_zero
hasFDerivAtFilter_iff_isLittleO
Asymptotics.isLittleO_norm_left
Asymptotics.isLittleO_norm_right
Asymptotics.isLittleO_iff_tendsto
Filter.tendsto_congr
div_eq_inv_mul
hasFDerivAt_id πŸ“–mathematicalβ€”HasFDerivAt
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”hasFDerivAtFilter_id
hasFDerivAt_iff_isLittleO_nhds_zero πŸ“–mathematicalβ€”HasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”HasFDerivAt.eq_1
hasFDerivAtFilter_iff_isLittleO
map_add_left_nhds_zero
SeminormedAddCommGroup.toIsTopologicalAddGroup
Asymptotics.isLittleO_map
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_add
SemilinearMapClass.toAddHomClass
add_sub_cancel_left
hasFDerivAt_iff_tendsto πŸ“–mathematicalβ€”HasFDerivAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.Tendsto
Real
Real.instMul
Real.instInv
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
nhds
Real.pseudoMetricSpace
Real.instZero
β€”hasFDerivAtFilter_iff_tendsto
hasFDerivWithinAt_diff_singleton πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instSDiff
Set.instSingletonSet
β€”hasFDerivWithinAt_insert
Set.insert_diff_singleton
hasFDerivWithinAt_diff_singleton_self πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instSDiff
Set.instSingletonSet
β€”hasFDerivWithinAt_insert_self
Set.insert_diff_singleton
hasFDerivWithinAt_id πŸ“–mathematicalβ€”HasFDerivWithinAt
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”hasFDerivAtFilter_id
hasFDerivWithinAt_iff_tendsto πŸ“–mathematicalβ€”HasFDerivWithinAt
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.Tendsto
Real
Real.instMul
Real.instInv
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
nhdsWithin
nhds
Real.pseudoMetricSpace
Real.instZero
β€”hasFDerivAtFilter_iff_tendsto
hasFDerivWithinAt_insert πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instInsert
β€”eq_or_ne
hasFDerivWithinAt_insert_self
HasFDerivWithinAt.of_insert
HasFDerivWithinAt.mono_of_mem_nhdsWithin
nhdsWithin_insert_of_ne
hasFDerivWithinAt_insert_self πŸ“–mathematicalβ€”HasFDerivWithinAt
Set
Set.instInsert
β€”Asymptotics.isLittleOTVS_insert
sub_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
hasFDerivWithinAt_inter πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
HasFDerivWithinAt
Set.instInter
β€”nhdsWithin_restrict'
hasFDerivWithinAt_inter' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
HasFDerivWithinAt
Set.instInter
β€”nhdsWithin_restrict''
hasFDerivWithinAt_of_isOpen πŸ“–mathematicalIsOpen
Set
Set.instMembership
HasFDerivWithinAt
HasFDerivAt
β€”hasFDerivWithinAt_of_mem_nhds
IsOpen.mem_nhds
hasFDerivWithinAt_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
HasFDerivWithinAt
HasFDerivAt
β€”HasFDerivAt.eq_1
HasFDerivWithinAt.eq_1
nhdsWithin_eq_nhds
hasFDerivWithinAt_univ πŸ“–mathematicalβ€”HasFDerivWithinAt
Set.univ
HasFDerivAt
β€”nhdsWithin_univ
hasStrictFDerivAt_id πŸ“–mathematicalβ€”HasStrictFDerivAt
ContinuousLinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
β€”Asymptotics.IsLittleOTVS.congr_left
Asymptotics.IsLittleOTVS.zero
sub_self
norm_fderiv_le_of_lip' πŸ“–mathematicalReal
Real.instLE
Real.instZero
Filter.Eventually
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instMul
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.hasOpNorm
fderiv
β€”HasFDerivAt.le_of_lip'
DifferentiableAt.hasFDerivAt
fderiv_zero_of_not_differentiableAt
norm_zero
RingHomIsometric.ids
norm_fderiv_le_of_lipschitz πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.hasOpNorm
fderiv
NNReal.toReal
β€”norm_fderiv_le_of_lipschitzOn
Filter.univ_mem
lipschitzOnWith_univ
norm_fderiv_le_of_lipschitzOn πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.hasOpNorm
fderiv
NNReal.toReal
β€”norm_fderiv_le_of_lip'
NNReal.coe_nonneg
Filter.mp_mem
Filter.univ_mem'
LipschitzOnWith.norm_sub_le
mem_of_mem_nhds

---

← Back to Index