Documentation Verification Report

Const

πŸ“ Source: Mathlib/Analysis/Calculus/FDeriv/Const.lean

Statistics

MetricCount
Definitions0
Theoremsfderiv, fderiv_apply, of_notMem_tsupport, of_notMem_tsupport, of_notMem_tsupport, differentiableOn, differentiableAt_const, differentiableAt_intCast, differentiableAt_natCast, differentiableAt_ofNat, differentiableAt_of_isInvertible_fderiv, differentiableAt_one, differentiableAt_zero, differentiableOn_const, differentiableOn_intCast, differentiableOn_natCast, differentiableOn_ofNat, differentiableOn_one, differentiableOn_singleton, differentiableOn_zero, differentiableWithinAt_const, differentiableWithinAt_intCast, differentiableWithinAt_natCast, differentiableWithinAt_ofNat, differentiableWithinAt_of_isInvertible_fderivWithin, differentiableWithinAt_one, differentiableWithinAt_zero, differentiable_const, differentiable_intCast, differentiable_natCast, differentiable_ofNat, differentiable_of_subsingleton, differentiable_one, differentiable_zero, fderivWithin_const, fderivWithin_const_apply, fderivWithin_fun_const, fderivWithin_intCast, fderivWithin_natCast, fderivWithin_ofNat, fderivWithin_one, fderivWithin_zero, fderiv_const, fderiv_const_apply, fderiv_fun_const, fderiv_intCast, fderiv_natCast, fderiv_ofNat, fderiv_of_notMem_tsupport, fderiv_one, fderiv_zero, hasFDerivAtFilter_const, hasFDerivAtFilter_intCast, hasFDerivAtFilter_natCast, hasFDerivAtFilter_ofNat, hasFDerivAtFilter_one, hasFDerivAtFilter_zero, hasFDerivAt_const, hasFDerivAt_intCast, hasFDerivAt_natCast, hasFDerivAt_ofNat, hasFDerivAt_of_subsingleton, hasFDerivAt_one, hasFDerivAt_zero, hasFDerivAt_zero_of_eventually_const, hasFDerivWithinAt_const, hasFDerivWithinAt_intCast, hasFDerivWithinAt_natCast, hasFDerivWithinAt_ofNat, hasFDerivWithinAt_of_subsingleton, hasFDerivWithinAt_one, hasFDerivWithinAt_singleton, hasFDerivWithinAt_zero, hasStrictFDerivAt_const, hasStrictFDerivAt_intCast, hasStrictFDerivAt_natCast, hasStrictFDerivAt_ofNat, hasStrictFDerivAt_one, hasStrictFDerivAt_zero, support_fderiv_subset, tsupport_fderiv_apply_subset, tsupport_fderiv_subset
82
Total82

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
fderiv πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
fderiv
β€”mono'
support_fderiv_subset
fderiv_apply πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
fderiv
β€”IsCompact.of_isClosed_subset
isClosed_tsupport
tsupport_fderiv_apply_subset

HasFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_notMem_tsupport πŸ“–mathematicalSet
Set.instMembership
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”HasStrictFDerivAt.hasFDerivAt
HasStrictFDerivAt.of_notMem_tsupport

HasFDerivWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_notMem_tsupport πŸ“–mathematicalSet
Set.instMembership
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasFDerivWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”HasFDerivAt.hasFDerivWithinAt
HasFDerivAt.of_notMem_tsupport

HasStrictFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_notMem_tsupport πŸ“–mathematicalSet
Set.instMembership
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasStrictFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”congr_of_eventuallyEq
hasStrictFDerivAt_const
Filter.EventuallyEq.symm
notMem_tsupport_iff_eventuallyEq

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableOn πŸ“–mathematicalSet.SubsingletonDifferentiableOnβ€”induction_on
differentiableOn_empty
differentiableOn_singleton

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableAt_const πŸ“–mathematicalβ€”DifferentiableAtβ€”hasFDerivAt_const
differentiableAt_intCast πŸ“–mathematicalβ€”DifferentiableAt
Pi.instIntCast
β€”differentiableAt_const
differentiableAt_natCast πŸ“–mathematicalβ€”DifferentiableAt
Pi.instNatCast
β€”differentiableAt_const
differentiableAt_ofNat πŸ“–mathematicalβ€”DifferentiableAtβ€”differentiableAt_const
differentiableAt_of_isInvertible_fderiv πŸ“–mathematicalContinuousLinearMap.IsInvertible
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
fderiv
DifferentiableAtβ€”differentiableWithinAt_of_isInvertible_fderivWithin
differentiableAt_one πŸ“–mathematicalβ€”DifferentiableAt
Pi.instOne
β€”differentiableAt_const
differentiableAt_zero πŸ“–mathematicalβ€”DifferentiableAt
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”differentiableAt_const
differentiableOn_const πŸ“–mathematicalβ€”DifferentiableOnβ€”Differentiable.differentiableOn
differentiable_const
differentiableOn_intCast πŸ“–mathematicalβ€”DifferentiableOn
Pi.instIntCast
β€”differentiableOn_const
differentiableOn_natCast πŸ“–mathematicalβ€”DifferentiableOn
Pi.instNatCast
β€”differentiableOn_const
differentiableOn_ofNat πŸ“–mathematicalβ€”DifferentiableOnβ€”differentiableOn_const
differentiableOn_one πŸ“–mathematicalβ€”DifferentiableOn
Pi.instOne
β€”differentiableOn_const
differentiableOn_singleton πŸ“–mathematicalβ€”DifferentiableOn
Set
Set.instSingletonSet
β€”HasFDerivWithinAt.differentiableWithinAt
hasFDerivWithinAt_singleton
differentiableOn_zero πŸ“–mathematicalβ€”DifferentiableOn
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”differentiableOn_const
differentiableWithinAt_const πŸ“–mathematicalβ€”DifferentiableWithinAtβ€”DifferentiableAt.differentiableWithinAt
differentiableAt_const
differentiableWithinAt_intCast πŸ“–mathematicalβ€”DifferentiableWithinAt
Pi.instIntCast
β€”differentiableWithinAt_const
differentiableWithinAt_natCast πŸ“–mathematicalβ€”DifferentiableWithinAt
Pi.instNatCast
β€”differentiableWithinAt_const
differentiableWithinAt_ofNat πŸ“–mathematicalβ€”DifferentiableWithinAtβ€”differentiableWithinAt_const
differentiableWithinAt_of_isInvertible_fderivWithin πŸ“–mathematicalContinuousLinearMap.IsInvertible
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
fderivWithin
DifferentiableWithinAtβ€”Mathlib.Tactic.Contrapose.contrapose₁
fderivWithin_zero_of_not_differentiableWithinAt
Mathlib.Tactic.Contrapose.contraposeβ‚„
ContinuousLinearMap.isInvertible_zero_iff
DifferentiableAt.differentiableWithinAt
HasFDerivAt.differentiableAt
hasFDerivAt_of_subsingleton
differentiableWithinAt_one πŸ“–mathematicalβ€”DifferentiableWithinAt
Pi.instOne
β€”differentiableWithinAt_const
differentiableWithinAt_zero πŸ“–mathematicalβ€”DifferentiableWithinAt
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”differentiableWithinAt_const
differentiable_const πŸ“–mathematicalβ€”Differentiableβ€”differentiableAt_const
differentiable_intCast πŸ“–mathematicalβ€”Differentiable
Pi.instIntCast
β€”differentiable_const
differentiable_natCast πŸ“–mathematicalβ€”Differentiable
Pi.instNatCast
β€”differentiable_const
differentiable_ofNat πŸ“–mathematicalβ€”Differentiableβ€”differentiable_const
differentiable_of_subsingleton πŸ“–mathematicalβ€”Differentiableβ€”HasFDerivAt.differentiableAt
hasFDerivAt_of_subsingleton
differentiable_one πŸ“–mathematicalβ€”Differentiable
Pi.instOne
β€”differentiable_const
differentiable_zero πŸ“–mathematicalβ€”Differentiable
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”differentiable_const
fderivWithin_const πŸ“–mathematicalβ€”fderivWithin
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_fun_const
fderivWithin_const_apply πŸ“–mathematicalβ€”fderivWithin
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_def
hasFDerivWithinAt_const
fderivWithin_fun_const πŸ“–mathematicalβ€”fderivWithin
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”ContinuousLinearMap.ext
fderivWithin_const_apply
Pi.zero_apply
fderivWithin_intCast πŸ“–mathematicalβ€”fderivWithin
Pi.instIntCast
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_const
fderivWithin_natCast πŸ“–mathematicalβ€”fderivWithin
Pi.instNatCast
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_const
fderivWithin_ofNat πŸ“–mathematicalβ€”fderivWithin
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_const
fderivWithin_one πŸ“–mathematicalβ€”fderivWithin
Pi.instOne
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_const
fderivWithin_zero πŸ“–mathematicalβ€”fderivWithin
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_const
fderiv_const πŸ“–mathematicalβ€”fderiv
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_fun_const
fderiv_const_apply πŸ“–mathematicalβ€”fderiv
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_def
fderivWithin_const_apply
fderiv_fun_const πŸ“–mathematicalβ€”fderiv
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderivWithin_univ
fderivWithin_fun_const
fderiv_intCast πŸ“–mathematicalβ€”fderiv
Pi.instIntCast
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_const
fderiv_natCast πŸ“–mathematicalβ€”fderiv
Pi.instNatCast
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_const
fderiv_ofNat πŸ“–mathematicalβ€”fderiv
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_const
fderiv_of_notMem_tsupport πŸ“–mathematicalSet
Set.instMembership
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
fderiv
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”Filter.EventuallyEq.fderiv_eq
notMem_tsupport_iff_eventuallyEq
fderiv_zero
fderiv_one πŸ“–mathematicalβ€”fderiv
Pi.instOne
Pi.instZero
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_const
fderiv_zero πŸ“–mathematicalβ€”fderiv
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”fderiv_const
hasFDerivAtFilter_const πŸ“–mathematicalβ€”HasFDerivAtFilter
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”Asymptotics.IsLittleOTVS.congr_left
Asymptotics.IsLittleOTVS.zero
sub_self
hasFDerivAtFilter_intCast πŸ“–mathematicalβ€”HasFDerivAtFilter
Pi.instIntCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAtFilter_natCast πŸ“–mathematicalβ€”HasFDerivAtFilter
Pi.instNatCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAtFilter_ofNat πŸ“–mathematicalβ€”HasFDerivAtFilter
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAtFilter_one πŸ“–mathematicalβ€”HasFDerivAtFilter
Pi.instOne
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAtFilter_zero πŸ“–mathematicalβ€”HasFDerivAtFilter
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAt_const πŸ“–mathematicalβ€”HasFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivAt_intCast πŸ“–mathematicalβ€”HasFDerivAt
Pi.instIntCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAt_const
hasFDerivAt_natCast πŸ“–mathematicalβ€”HasFDerivAt
Pi.instNatCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAt_const
hasFDerivAt_ofNat πŸ“–mathematicalβ€”HasFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAt_const
hasFDerivAt_of_subsingleton πŸ“–mathematicalβ€”HasFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_univ
Set.Subsingleton.eq_singleton_of_mem
Set.subsingleton_univ
Set.mem_univ
hasFDerivWithinAt_singleton
hasFDerivAt_one πŸ“–mathematicalβ€”HasFDerivAt
Pi.instOne
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAt_const
hasFDerivAt_zero πŸ“–mathematicalβ€”HasFDerivAt
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAt_const
hasFDerivAt_zero_of_eventually_const πŸ“–mathematicalFilter.EventuallyEq
nhds
HasFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”HasFDerivAt.congr_of_eventuallyEq
hasFDerivAt_const
hasFDerivWithinAt_const πŸ“–mathematicalβ€”HasFDerivWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivAtFilter_const
hasFDerivWithinAt_intCast πŸ“–mathematicalβ€”HasFDerivWithinAt
Pi.instIntCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_const
hasFDerivWithinAt_natCast πŸ“–mathematicalβ€”HasFDerivWithinAt
Pi.instNatCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_const
hasFDerivWithinAt_ofNat πŸ“–mathematicalβ€”HasFDerivWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_const
hasFDerivWithinAt_of_subsingleton πŸ“–mathematicalβ€”HasFDerivWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”Set.eq_empty_or_singleton_of_subsingleton
HasFDerivWithinAt.singleton
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
Subsingleton.discreteTopology
hasFDerivWithinAt_one πŸ“–mathematicalβ€”HasFDerivWithinAt
Pi.instOne
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_const
hasFDerivWithinAt_singleton πŸ“–mathematicalβ€”HasFDerivWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
Set
Set.instSingletonSet
β€”HasFDerivWithinAt.of_not_accPt
accPt_iff_clusterPt
Filter.inf_principal
Set.inter_singleton_of_notMem
Filter.principal_empty
inf_of_le_right
hasFDerivWithinAt_zero πŸ“–mathematicalβ€”HasFDerivWithinAt
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasFDerivWithinAt_const
hasStrictFDerivAt_const πŸ“–mathematicalβ€”HasStrictFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”Asymptotics.IsLittleOTVS.congr_left
Asymptotics.IsLittleOTVS.zero
sub_self
hasStrictFDerivAt_intCast πŸ“–mathematicalβ€”HasStrictFDerivAt
Pi.instIntCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasStrictFDerivAt_const
hasStrictFDerivAt_natCast πŸ“–mathematicalβ€”HasStrictFDerivAt
Pi.instNatCast
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasStrictFDerivAt_const
hasStrictFDerivAt_ofNat πŸ“–mathematicalβ€”HasStrictFDerivAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasStrictFDerivAt_const
hasStrictFDerivAt_one πŸ“–mathematicalβ€”HasStrictFDerivAt
Pi.instOne
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasStrictFDerivAt_const
hasStrictFDerivAt_zero πŸ“–mathematicalβ€”HasStrictFDerivAt
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”hasStrictFDerivAt_const
support_fderiv_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
fderiv
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”not_imp_not
Function.notMem_support
fderiv_of_notMem_tsupport
tsupport_fderiv_apply_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
fderiv
β€”HasSubset.Subset.trans
Set.instIsTransSubset
tsupport_comp_subset
tsupport_fderiv_subset
tsupport_fderiv_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
tsupport
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
fderiv
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”closure_minimal
support_fderiv_subset
isClosed_closure

---

← Back to Index