Documentation Verification Report

ApproximatesLinearOn

πŸ“ Source: Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean

Statistics

MetricCount
DefinitionsApproximatesLinearOn, toHomeomorph, toOpenPartialHomeomorph, toPartialEquiv, toPartialHomeomorph
5
Theoremsantilipschitz, approximatesLinearOn_iff_lipschitzOnWith, closedBall_subset_target, continuous, continuousOn, image_mem_nhds, injOn, injective, inverse_continuousOn, lipschitz, lipschitzOnWith, lipschitz_sub, map_nhds_eq, mono_num, mono_set, open_image, surjOn_closedBall_of_nonlinearRightInverse, surjective, toOpenPartialHomeomorph_coe, toOpenPartialHomeomorph_source, toOpenPartialHomeomorph_target, toPartialHomeomorph_coe, toPartialHomeomorph_source, toPartialHomeomorph_target, to_inv, approximatesLinearOn, approximatesLinearOn_empty
27
Total32

ApproximatesLinearOn

Definitions

NameCategoryTheorems
toHomeomorph πŸ“–CompOpβ€”
toOpenPartialHomeomorph πŸ“–CompOp
7 mathmath: toPartialHomeomorph_target, toOpenPartialHomeomorph_coe, closedBall_subset_target, toOpenPartialHomeomorph_target, toPartialHomeomorph_coe, toPartialHomeomorph_source, toOpenPartialHomeomorph_source
toPartialEquiv πŸ“–CompOp
2 mathmath: inverse_continuousOn, to_inv
toPartialHomeomorph πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitz πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
AntilipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
NNReal.instSub
Set.restrict
β€”RingHomInvPair.ids
RingHomIsometric.ids
AntilipschitzWith.of_subsingleton
Set.subsingleton_coe_of_subsingleton
add_sub_cancel
AntilipschitzWith.add_lipschitzWith
AntilipschitzWith.restrict
ContinuousLinearEquiv.antilipschitz
lipschitz_sub
approximatesLinearOn_iff_lipschitzOnWith πŸ“–mathematicalβ€”ApproximatesLinearOn
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.const_add_termg
closedBall_subset_target πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
Real
Real.instLE
Real.instZero
Set
Set.instHasSubset
Metric.closedBall
Real.instMul
Real.instSub
NNReal.toReal
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
β€”RingHomInvPair.ids
RingHomIsometric.ids
Set.SurjOn.mono
Set.Subset.rfl
surjOn_closedBall_of_nonlinearRightInverse
continuous πŸ“–mathematicalApproximatesLinearOnContinuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.restrict
β€”LipschitzWith.continuous
RingHomIsometric.ids
lipschitz
continuousOn πŸ“–mathematicalApproximatesLinearOnContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”continuousOn_iff_continuous_restrict
continuous
image_mem_nhds πŸ“–mathematicalApproximatesLinearOn
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
ContinuousLinearMap.NonlinearRightInverse.nnnorm
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Set.imageβ€”mem_nhds_iff
IsOpen.mem_nhds
open_image
mono_set
Set.mem_image_of_mem
Filter.mem_of_superset
Set.image_mono
injOn πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
Set.InjOnβ€”RingHomInvPair.ids
RingHomIsometric.ids
Set.injOn_iff_injective
injective
injective πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
Set.Elem
Set.restrict
β€”RingHomInvPair.ids
RingHomIsometric.ids
AntilipschitzWith.injective
antilipschitz
inverse_continuousOn πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
ContinuousOn
PartialEquiv.toFun
PartialEquiv.symm
toPartialEquiv
Set.image
β€”RingHomInvPair.ids
RingHomIsometric.ids
continuousOn_iff_continuous_restrict
LipschitzWith.continuous
AntilipschitzWith.to_rightInvOn'
antilipschitz
PartialEquiv.map_target
PartialEquiv.right_inv'
lipschitz πŸ“–mathematicalApproximatesLinearOnLipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNNorm.nnnorm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Set.restrict
β€”RingHomIsometric.ids
add_sub_cancel
LipschitzWith.add
LipschitzWith.restrict
ContinuousLinearMap.lipschitz
lipschitz_sub
lipschitzOnWith πŸ“–mathematicalApproximatesLinearOnLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
β€”approximatesLinearOn_iff_lipschitzOnWith
lipschitz_sub πŸ“–mathematicalApproximatesLinearOnLipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
β€”LipschitzOnWith.to_restrict
lipschitzOnWith
map_nhds_eq πŸ“–mathematicalApproximatesLinearOn
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
ContinuousLinearMap.NonlinearRightInverse.nnnorm
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Filter.mapβ€”le_antisymm
ContinuousWithinAt.continuousAt
continuousOn
mem_of_mem_nhds
Filter.le_map
image_mem_nhds
mono_set
Set.inter_subset_left
Filter.inter_mem
Filter.mem_of_superset
Set.image_mono
Set.inter_subset_right
mono_num πŸ“–β€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ApproximatesLinearOn
β€”β€”le_trans
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
mono_set πŸ“–β€”Set
Set.instHasSubset
ApproximatesLinearOn
β€”β€”β€”
open_image πŸ“–mathematicalApproximatesLinearOn
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
ContinuousLinearMap.NonlinearRightInverse.nnnorm
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Set.imageβ€”isOpen_discrete
Finite.instDiscreteTopology
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_subsingleton
Filter.HasBasis.mem_iff
Metric.nhds_basis_closedBall
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.SurjOn.mono
Set.Subset.rfl
surjOn_closedBall_of_nonlinearRightInverse
le_of_lt
surjOn_closedBall_of_nonlinearRightInverse πŸ“–mathematicalApproximatesLinearOn
Real
Real.instLE
Real.instZero
Set
Set.instHasSubset
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.SurjOn
Real.instMul
Real.instSub
Real.instInv
NNReal.toReal
ContinuousLinearMap.NonlinearRightInverse.nnnorm
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
β€”le_or_gt
dist_self
LE.le.trans
Metric.mem_closedBall
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LE.le.trans_lt
NNReal.coe_nonneg
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
inv_eq_one_div
ne_of_gt
lt_of_not_ge
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Function.iterate_succ_apply'
dist_eq_norm
add_sub_cancel_left
dist_eq_norm'
ContinuousLinearMap.NonlinearRightInverse.bound
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.const_add_termg
ContinuousLinearMap.NonlinearRightInverse.right_inv
sub_add_cancel
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
div_mul_eq_mul_div
div_le_iffβ‚€
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
sub_le_self_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pow_nonneg
IsOrderedRing.toZeroLEOneClass
mul_nonneg
le_of_lt
dist_nonneg
mul_one
Metric.mem_closedBall'
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
pow_zero
sub_self
MulZeroClass.mul_zero
zero_div
MulZeroClass.zero_mul
dist_triangle
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
pow_succ
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
pow_succ'
cauchySeq_of_le_geometric
dist_comm
cauchySeq_tendsto_of_complete
IsClosed.mem_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Metric.isClosed_closedBall
Filter.Eventually.of_forall
Filter.Tendsto.comp
ContinuousWithinAt.tendsto
ContinuousOn.mono
continuousOn
tendsto_iff_dist_tendsto_zero
squeeze_zero
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
tendsto_const_nhds
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
surjective πŸ“–β€”ApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Set.univ
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
β€”β€”RingHomInvPair.ids
RingHomIsometric.ids
Function.surjective_to_subsingleton
AddTorsor.nonempty
Equiv.subsingleton_congr
Metric.forall_of_forall_mem_closedBall
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Filter.eventually_ge_atTop
Filter.Eventually.mono
Set.Subset.trans
surjOn_closedBall_of_nonlinearRightInverse
Set.subset_univ
Set.image_subset_range
Filter.Frequently.mono
Filter.Tendsto.frequently
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
Filter.tendsto_id
Filter.Eventually.frequently
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
toOpenPartialHomeomorph_coe πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
OpenPartialHomeomorph.toFun'
toOpenPartialHomeomorph
β€”RingHomInvPair.ids
RingHomIsometric.ids
toOpenPartialHomeomorph_source πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
β€”RingHomInvPair.ids
RingHomIsometric.ids
toOpenPartialHomeomorph_target πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
Set.image
β€”RingHomInvPair.ids
RingHomIsometric.ids
toPartialHomeomorph_coe πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
OpenPartialHomeomorph.toFun'
toOpenPartialHomeomorph
β€”toOpenPartialHomeomorph_coe
toPartialHomeomorph_source πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
β€”toOpenPartialHomeomorph_source
toPartialHomeomorph_target πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
IsOpen
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
Set.image
β€”toOpenPartialHomeomorph_target
to_inv πŸ“–mathematicalApproximatesLinearOn
ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
NNNorm.nnnorm
ContinuousLinearMap
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousLinearEquiv.symm
PartialEquiv.toFun
PartialEquiv.symm
toPartialEquiv
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringNNReal
NNReal.instSub
β€”RingHomInvPair.ids
RingHomIsometric.ids
Set.mem_image
PartialEquiv.left_inv
ContinuousLinearMap.bound_of_antilipschitz
ContinuousLinearEquiv.antilipschitz
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
ContinuousLinearEquiv.continuousSemilinearEquivClass
ContinuousLinearEquiv.apply_symm_apply
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.const_add_termg
add_zero
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
dist_eq_norm
AntilipschitzWith.le_mul_dist
antilipschitz
norm_sub_rev
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
approximatesLinearOn πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
ApproximatesLinearOnβ€”ApproximatesLinearOn.approximatesLinearOn_iff_lipschitzOnWith

(root)

Definitions

NameCategoryTheorems
ApproximatesLinearOn πŸ“–MathDef
7 mathmath: exists_partition_approximatesLinearOn_of_hasFDerivWithinAt, ApproximatesLinearOn.approximatesLinearOn_iff_lipschitzOnWith, HasStrictFDerivAt.approximates_deriv_on_nhds, exists_closed_cover_approximatesLinearOn_of_hasFDerivWithinAt, HasStrictFDerivAt.approximates_deriv_on_open_nhds, approximatesLinearOn_empty, LipschitzOnWith.approximatesLinearOn

Theorems

NameKindAssumesProvesValidatesDepends On
approximatesLinearOn_empty πŸ“–mathematicalβ€”ApproximatesLinearOn
Set
Set.instEmptyCollection
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
instIsEmptyFalse

---

← Back to Index