Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Calculus/TangentCone/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsof_mem_tangentConeAt_ne_zero, tangentConeAt_eq_biInter_closure, uniqueDiffOn, uniqueDiffWithinAt, inter, mono_field, accPt, closure, congr_pt, inter, inter', mono, mono_closure, mono_field, mono_nhds, of_closure, mem_closure_of_nonempty_tangentConeAt, mem_tangentConeAt_of_add_smul_mem, tangentConeAt_closure, tangentConeAt_congr, tangentConeAt_eq_biInter_closure, tangentConeAt_inter_nhds, tangentConeAt_mono, tangentConeAt_mono_field, tangentConeAt_mono_nhds, tangentConeAt_of_mem_nhds, tangentConeAt_subset_zero, tangentConeAt_univ, uniqueDiffOn_empty, uniqueDiffOn_univ, uniqueDiffWithinAt_closure, uniqueDiffWithinAt_congr, uniqueDiffWithinAt_inter, uniqueDiffWithinAt_inter', uniqueDiffWithinAt_of_mem_nhds, uniqueDiffWithinAt_univ, zero_mem_tangentCone, zero_mem_tangentConeAt, zero_mem_tangentConeAt_iff
39
Total39

AccPt

Theorems

NameKindAssumesProvesValidatesDepends On
of_mem_tangentConeAt_ne_zero πŸ“–mathematicalSet
Set.instMembership
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AccPt
Filter.principal
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
tangentConeAt_subset_zero

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
tangentConeAt_eq_biInter_closure πŸ“–mathematicalFilter.HasBasis
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
tangentConeAt
Set.iInter
closure
Set
Set.smul
Set.univ
Set.instInter
Set.preimage
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”Set.ext
tangentConeAt_def
clusterPt_iff_forall_mem_closure
map
top_prod
nhdsWithin_hasBasis
Set.image_prod

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
uniqueDiffOn πŸ“–mathematicalIsOpenUniqueDiffOn
DivisionSemiring.toSemiring
β€”uniqueDiffWithinAt
uniqueDiffWithinAt πŸ“–mathematicalIsOpen
Set
Set.instMembership
UniqueDiffWithinAt
DivisionSemiring.toSemiring
β€”uniqueDiffWithinAt_of_mem_nhds
mem_nhds

UniqueDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
inter πŸ“–mathematicalUniqueDiffOn
IsOpen
Set
Set.instInter
β€”UniqueDiffWithinAt.inter
IsOpen.mem_nhds
mono_field πŸ“–β€”UniqueDiffOnβ€”β€”UniqueDiffWithinAt.mono_field

UniqueDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
accPt πŸ“–mathematicalUniqueDiffWithinAtAccPt
Filter.principal
β€”Dense.mono
instIsConcreteLE
Submodule.span_mono
tangentConeAt_subset_zero
dense_tangentConeAt
Submodule.span_zero
IsClosed.closure_eq
T2Space.t1Space
closure πŸ“–mathematicalUniqueDiffWithinAtclosureβ€”mono
subset_closure
congr_pt πŸ“–β€”UniqueDiffWithinAtβ€”β€”β€”
inter πŸ“–mathematicalUniqueDiffWithinAt
Set
Filter
Filter.instMembership
nhds
Set.instInterβ€”uniqueDiffWithinAt_inter
inter' πŸ“–mathematicalUniqueDiffWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.instInterβ€”uniqueDiffWithinAt_inter'
mono πŸ“–β€”UniqueDiffWithinAt
Set
Set.instHasSubset
β€”β€”uniqueDiffWithinAt_iff
Dense.mono
instIsConcreteLE
Submodule.span_mono
tangentConeAt_mono
Set.mem_of_subset_of_mem
closure_mono
mono_closure πŸ“–β€”UniqueDiffWithinAt
Set
Set.instHasSubset
closure
β€”β€”of_closure
mono
mono_field πŸ“–β€”UniqueDiffWithinAtβ€”β€”Dense.mono
instIsConcreteLE
Submodule.span_mono
tangentConeAt_mono_field
mono_nhds πŸ“–β€”UniqueDiffWithinAt
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
β€”β€”mem_closure_iff_nhdsWithin_neBot
Dense.mono
Submodule.span_mono
tangentConeAt_mono_nhds
Filter.NeBot.mono
of_closure πŸ“–β€”UniqueDiffWithinAt
closure
β€”β€”uniqueDiffWithinAt_closure

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
mem_closure_of_nonempty_tangentConeAt πŸ“–mathematicalSet.Nonempty
tangentConeAt
Set
Set.instMembership
closure
β€”exists_fun_of_mem_tangentConeAt
mem_closure_of_tendsto
add_zero
Filter.Tendsto.add
tendsto_const_nhds
mem_tangentConeAt_of_add_smul_mem πŸ“–mathematicalFilter.Tendsto
nhdsWithin
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.Eventually
Set.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
tangentConeAtβ€”mem_tangentConeAt_of_seq
zero_smul
Filter.Tendsto.smul
tendsto_nhdsWithin_iff
tendsto_const_nhds
tendsto_nhds_of_eventually_eq
Filter.Eventually.mono
inv_smul_smulβ‚€
tangentConeAt_closure πŸ“–mathematicalβ€”tangentConeAt
closure
β€”Set.Subset.antisymm
Filter.HasBasis.tangentConeAt_eq_biInter_closure
nhds_basis_opens
Set.iInterβ‚‚_mono
closure_minimal
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
Set.smul_subset_smul
subset_refl
Set.instReflSubset
Set.inter_subset_inter
IsOpenMap.preimage_closure_subset_closure_preimage
isOpenMap_add_left
IsOpen.inter_closure
set_smul_closure_subset
isClosed_closure
tangentConeAt_mono
subset_closure
tangentConeAt_congr πŸ“–mathematicalnhdsWithintangentConeAtβ€”Set.Subset.antisymm
tangentConeAt_mono_nhds
Eq.le
Eq.ge
tangentConeAt_eq_biInter_closure πŸ“–mathematicalβ€”tangentConeAt
Set.iInter
Set
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
closure
Set.smul
Set.univ
Set.instInter
Set.preimage
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”Filter.HasBasis.tangentConeAt_eq_biInter_closure
Filter.basis_sets
tangentConeAt_inter_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
tangentConeAt
Set.instInter
β€”tangentConeAt_congr
nhdsWithin_restrict'
tangentConeAt_mono πŸ“–mathematicalSet
Set.instHasSubset
tangentConeAtβ€”tangentConeAt_def
ClusterPt.mono
Filter.smul_le_smul
le_refl
nhdsWithin_mono
Set.preimage_mono
tangentConeAt_mono_field πŸ“–mathematicalβ€”Set
Set.instHasSubset
tangentConeAt
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”tangentConeAt_def
ClusterPt.mono
smul_one_smul
Filter.isScalarTower''
le_imp_le_of_le_of_le
Filter.smul_le_smul
le_top
le_refl
tangentConeAt_mono_nhds πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Set
Set.instHasSubset
tangentConeAt
β€”tangentConeAt_def
ClusterPt.mono
Filter.smul_le_smul
le_refl
nhdsWithin_le_iff
Filter.Tendsto.inf
Continuous.tendsto'
continuous_add_left
add_zero
Set.MapsTo.tendsto
Set.mapsTo_preimage
tendsto_nhdsWithin_iff
Filter.Tendsto.mono_right
tangentConeAt_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Set.univ
β€”Set.univ_inter
tangentConeAt_inter_nhds
tangentConeAt_univ
tangentConeAt_subset_zero πŸ“–mathematicalAccPt
Filter.principal
Set
Set.instHasSubset
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Set.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”exists_fun_of_mem_tangentConeAt
add_zero
Filter.Tendsto.add
tendsto_const_nhds
AddLeftCancelSemigroup.toIsLeftCancelAdd
Filter.Eventually.mp
Filter.Tendsto.eventually
Filter.Eventually.mono
smul_zero
tendsto_nhds_unique_of_eventuallyEq
tangentConeAt_univ πŸ“–mathematicalβ€”tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Set.univ
β€”tangentConeAt_def
nhdsWithin_univ
Filter.top_smul_nhds_zero
uniqueDiffOn_empty πŸ“–mathematicalβ€”UniqueDiffOn
Set
Set.instEmptyCollection
β€”β€”
uniqueDiffOn_univ πŸ“–mathematicalβ€”UniqueDiffOn
DivisionSemiring.toSemiring
Set.univ
β€”uniqueDiffWithinAt_univ
uniqueDiffWithinAt_closure πŸ“–mathematicalβ€”UniqueDiffWithinAt
closure
β€”tangentConeAt_closure
IsClosed.closure_eq
uniqueDiffWithinAt_congr πŸ“–mathematicalnhdsWithinUniqueDiffWithinAtβ€”UniqueDiffWithinAt.mono_nhds
le_of_eq
uniqueDiffWithinAt_inter πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniqueDiffWithinAt
Set.instInter
β€”uniqueDiffWithinAt_congr
nhdsWithin_restrict'
uniqueDiffWithinAt_inter' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
UniqueDiffWithinAt
Set.instInter
β€”uniqueDiffWithinAt_congr
nhdsWithin_restrict''
uniqueDiffWithinAt_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniqueDiffWithinAt
DivisionSemiring.toSemiring
β€”Set.univ_inter
UniqueDiffWithinAt.inter
uniqueDiffWithinAt_univ
uniqueDiffWithinAt_univ πŸ“–mathematicalβ€”UniqueDiffWithinAt
DivisionSemiring.toSemiring
Set.univ
β€”uniqueDiffWithinAt_iff
tangentConeAt_univ
Submodule.span_univ
IsClosed.closure_eq
zero_mem_tangentCone πŸ“–mathematicalSet
Set.instMembership
closure
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”zero_mem_tangentConeAt
zero_mem_tangentConeAt πŸ“–mathematicalSet
Set.instMembership
closure
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”mem_tangentConeAt_of_frequently
Continuous.tendsto'
Continuous.fun_add
continuous_id'
continuous_const
add_neg_cancel
add_neg_cancel_comm_assoc
mem_closure_iff_frequently
one_smul
zero_mem_tangentConeAt_iff πŸ“–mathematicalβ€”Set
Set.instMembership
tangentConeAt
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
closure
β€”mem_closure_of_nonempty_tangentConeAt
zero_mem_tangentConeAt

---

← Back to Index