Documentation Verification Report

ProperSpace

📁 Source: Mathlib/Analysis/Calculus/TangentCone/ProperSpace.lean

Statistics

MetricCount
Definitions0
TheoremstangentConeAt_nonempty_of_properSpace
1
Total1

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
tangentConeAt_nonempty_of_properSpace 📖mathematicalSet.Nonempty
Set
Set.instInter
tangentConeAt
NormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Compl.compl
Set.instCompl
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
accPt_iff_nhds
Metric.closedBall_mem_nhds
add_sub_cancel
NormedField.exists_one_lt_norm
rescale_to_shell
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsCompact.tendsto_subseq
IsCompact.diff
ProperSpace.isCompact_closedBall
Metric.isOpen_ball
dist_zero_right
LT.lt.le
mem_tangentConeAt_of_seq
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
squeeze_zero_norm
dist_eq_norm
StrictMono.tendsto_atTop
Filter.Eventually.of_forall
Mathlib.Tactic.Contrapose.contrapose₃
one_div
dist_self
norm_zero

---

← Back to Index