📁 Source: Mathlib/Analysis/Calculus/TangentCone/Real.lean
span_tangentConeAt
mem_tangentConeAt_of_openSegment_subset
mem_tangentConeAt_of_segment_subset
sub_mem_posTangentConeAt_of_openSegment_subset
uniqueDiffOn_Icc
uniqueDiffOn_Icc_zero_one
uniqueDiffOn_Ici
uniqueDiffOn_Ico
uniqueDiffOn_Iic
uniqueDiffOn_Iio
uniqueDiffOn_Ioc
uniqueDiffOn_Ioi
uniqueDiffOn_Ioo
uniqueDiffOn_convex
uniqueDiffWithinAt_Ici
uniqueDiffWithinAt_Iic
uniqueDiffWithinAt_Iio
uniqueDiffWithinAt_Ioi
uniqueDiffWithinAt_Ioo
uniqueDiffWithinAt_convex
Convex
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Set.Nonempty
interior
Set
Set.instMembership
closure
Submodule.span
tangentConeAt
Top.top
Submodule
Submodule.instTop
mem_interior_iff_mem_nhds
IsOpen.mem_nhds
isOpen_interior
Filter.mem_of_superset
IsOpenMap.image_mem_nhds
isOpenMap_sub_right
Set.Subset.trans
openSegment_closure_interior_subset_interior
ContinuousSMul.continuousConstSMul
interior_subset
Submodule.eq_top_of_nonempty_interior'
IsTopologicalAddGroup.toContinuousAdd
NormedField.nhdsWithin_isUnit_neBot
interior_mono
Submodule.subset_span
Set.instHasSubset
openSegment
SubNegMonoid.toSub
tangentConeAt_mono_field
NNReal.instIsScalarTowerOfReal
IsScalarTower.left
segment
HasSubset.Subset.trans
Set.instIsTransSubset
openSegment_subset_segment
NNReal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NNReal.instDistribMulActionOfReal
mem_tangentConeAt_of_add_smul_mem
NNReal.instContinuousSMulOfReal
nhdsGT_neBot
NNReal.instOrderTopology
NNReal.instDenselyOrdered
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
Filter.tendsto_id'
nhdsGT_le_nhdsNE
Filter.mp_mem
Ioo_mem_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
one_pos
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Filter.univ_mem'
openSegment_eq_image_lineMap
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_zero
Nat.cast_one
add_comm
Real.instLT
UniqueDiffOn
Real.instAddCommGroup
Semiring.toModule
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc
Real.instPreorder
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instIsTopologicalAddGroupReal
convex_Icc
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instNoMaxOrderOfNontrivial
Real.instZero
Real.instOne
zero_lt_one
Real.instZeroLEOneClass
Set.Ici
convex_Ici
interior_Ici
Set.Ico
convex_Ico
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
interior_Ico
Set.Ico_eq_empty
Set.Iic
convex_Iic
interior_Iic
Set.Iio
IsOpen.uniqueDiffOn
NormedField.nhdsNE_neBot
IsTopologicalSemiring.toContinuousAdd
isOpen_Iio
Set.Ioc
convex_Ioc
interior_Ioc
Set.Ioc_eq_empty
Set.Ioi
isOpen_Ioi
instClosedIicTopology
Set.Ioo
isOpen_Ioo
subset_closure
UniqueDiffWithinAt
UniqueDiffWithinAt.mono
Set.Ioi_subset_Ici_self
Set.Iio_subset_Iic_self
convex_Iio
interior_Iio
closure_Iio
convex_Ioi
interior_Ioi
closure_Ioi
IsOpen.uniqueDiffWithinAt
Convex.span_tangentConeAt
---
← Back to Index