Documentation Verification Report

AbelLimit

๐Ÿ“ Source: Mathlib/Analysis/Complex/AbelLimit.lean

Statistics

MetricCount
DefinitionsstolzCone, stolzSet
2
Theoremsabel_aux, nhdsWithin_lt_le_nhdsWithin_stolzSet, nhdsWithin_stolzCone_le_nhdsWithin_stolzSet, stolzCone_subset_stolzSet_aux, stolzSet_empty, tendsto_tsum_powerSeries_nhdsWithin_lt, tendsto_tsum_powerSeries_nhdsWithin_stolzCone, tendsto_tsum_powerSeries_nhdsWithin_stolzSet, tendsto_tsum_powerSeries_nhdsWithin_lt
9
Total11

Complex

Definitions

NameCategoryTheorems
stolzCone ๐Ÿ“–CompOp
3 mathmath: tendsto_tsum_powerSeries_nhdsWithin_stolzCone, stolzCone_subset_stolzSet_aux, nhdsWithin_stolzCone_le_nhdsWithin_stolzSet
stolzSet ๐Ÿ“–CompOp
5 mathmath: nhdsWithin_lt_le_nhdsWithin_stolzSet, stolzCone_subset_stolzSet_aux, nhdsWithin_stolzCone_le_nhdsWithin_stolzSet, tendsto_tsum_powerSeries_nhdsWithin_stolzSet, stolzSet_empty

Theorems

NameKindAssumesProvesValidatesDepends On
abel_aux ๐Ÿ“–mathematicalFilter.Tendsto
Complex
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
Filter.atTop
Nat.instPreorder
nhds
Real
Real.instLT
Norm.norm
instNorm
Real.instOne
instMul
instSub
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
tsum
SummationFilter.unconditional
โ€”Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
HasSum.tendsto_sum_nat
Summable.hasSum
summable_powerSeries_of_norm_lt_one
instCompleteSpace
Filter.Tendsto.cauchySeq
MulZeroClass.zero_mul
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
neg_sub
neg_zero
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
tendsto_sub_nhds_zero_iff
geom_sum_eq
Mathlib.Tactic.Contrapose.contraposeโ‚ƒ
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
sub_div
sub_eq_add_neg
neg_div
zero_add
zero_div
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
Filter.Tendsto.div_const
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
T2Space.t1Space
instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.const_mul
Finset.mul_sum
Finset.sum_congr
Finset.sum_Ico_eq_sub
Finset.mem_range
Finset.range_eq_Ico
mul_comm
MulZeroClass.mul_zero
mul_add
Distrib.leftDistribClass
Finset.sum_add_distrib
add_mul
Distrib.rightDistribClass
sub_add_sub_cancel
nhdsWithin_lt_le_nhdsWithin_stolzSet ๐Ÿ“–mathematicalReal
Real.instLT
Real.instOne
Filter
Complex
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
ofReal
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Iio
Real.instPreorder
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instOne
stolzSet
โ€”Filter.tendsto_id'
Filter.tendsto_map'
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
tendsto_nhdsWithin_of_tendsto_nhds
Continuous.tendsto'
ContinuousLinearMap.continuous
Nat.instAtLeastTwoHAddOfNat
isOpen_Ioo
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
norm_real
Real.norm_of_nonneg
LT.lt.le
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_mul_left
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
nhdsWithin_stolzCone_le_nhdsWithin_stolzSet ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Filter
Complex
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instOne
stolzCone
stolzSet
โ€”stolzCone_subset_stolzSet_aux
nhdsWithin_le_iff
mem_nhdsWithin
isOpen_lt
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
continuous_const
continuous_re
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
stolzCone_subset_stolzSet_aux ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Set
Complex
Set.instHasSubset
Set.instInter
setOf
Real.instSub
Real.instOne
re
stolzCone
stolzSet
โ€”mul_pos_iff_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LE.le.trans_lt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sub_re
one_re
Set.mem_setOf_eq
stolzCone.eq_1
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
zero_sub
neg_sq
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
norm_nonneg
norm_eq_sqrt_sq_add_sq
sub_sub_cancel
stolzSet_empty ๐Ÿ“–mathematicalReal
Real.instLE
Real.instOne
stolzSet
Set
Complex
Set.instEmptyCollection
โ€”Set.ext
stolzSet.eq_1
Set.mem_setOf
Set.mem_empty_iff_false
not_lt
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
LT.lt.le
one_mul
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
norm_sub_norm_le
tendsto_tsum_powerSeries_nhdsWithin_lt ๐Ÿ“–mathematicalFilter.Tendsto
Complex
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
Filter.atTop
Nat.instPreorder
nhds
tsum
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
SummationFilter.unconditional
Filter.map
Real
ofReal
nhdsWithin
Real.pseudoMetricSpace
Real.instOne
Set.Iio
Real.instPreorder
โ€”Filter.Tendsto.mono_left
Nat.instAtLeastTwoHAddOfNat
tendsto_tsum_powerSeries_nhdsWithin_stolzSet
nhdsWithin_lt_le_nhdsWithin_stolzSet
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_tsum_powerSeries_nhdsWithin_stolzCone ๐Ÿ“–mathematicalFilter.Tendsto
Complex
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
Filter.atTop
Nat.instPreorder
nhds
Real
Real.instLT
Real.instZero
tsum
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
SummationFilter.unconditional
nhdsWithin
instOne
stolzCone
โ€”Filter.Tendsto.mono_left
nhdsWithin_stolzCone_le_nhdsWithin_stolzSet
tendsto_tsum_powerSeries_nhdsWithin_stolzSet
tendsto_tsum_powerSeries_nhdsWithin_stolzSet ๐Ÿ“–mathematicalFilter.Tendsto
Complex
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
Filter.atTop
Nat.instPreorder
nhds
tsum
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
SummationFilter.unconditional
nhdsWithin
instOne
stolzSet
โ€”le_or_gt
stolzSet_empty
nhdsWithin_empty
Metric.tendsto_atTop
Metric.tendsto_nhdsWithin_nhds
dist_eq_norm
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
lt_trans
Nat.cast_one
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.sum_nonneg
norm_nonneg
abel_aux
norm_sub_rev
mul_add
Distrib.leftDistribClass
Finset.sum_range_add_sum_Ico
le_max_left
norm_add_le
norm_mul
NormedDivisionRing.toNormMulClass
add_le_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Finset.sum_congr
NormedDivisionRing.to_normOneClass
Finset.sum_le_sum
mul_one
pow_le_oneโ‚€
LT.lt.le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_div_iffโ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
Int.instIsOrderedAddMonoid
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_add
Finset.mem_Ico
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Finset.mul_sum
mul_assoc
Summable.sum_le_tsum
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
summable_geometric_of_lt_one
mul_nonneg
le_of_lt
tsum_geometric_of_lt_one
div_eq_mul_inv
div_lt_div_of_pos_right
mul_lt_mul_of_pos_right
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
mul_rotate
mul_div_cancel_rightโ‚€
GroupWithZero.toMulDivCancelClass
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
div_mul_cancelโ‚€
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_overlap_pf
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.add_subst
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel
add_halves
CharZero.NeZero.two

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_tsum_powerSeries_nhdsWithin_lt ๐Ÿ“–mathematicalFilter.Tendsto
Real
Finset.sum
instAddCommMonoid
Finset.range
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
tsum
instMul
Monoid.toNatPow
instMonoid
SummationFilter.unconditional
nhdsWithin
instOne
Set.Iio
instPreorder
โ€”Continuous.tendsto
ContinuousLinearMap.continuous
Filter.Tendsto.mono_right
Filter.Tendsto.comp
Filter.tendsto_map
Complex.tendsto_tsum_powerSeries_nhdsWithin_lt
Complex.ofReal_sum
Metric.tendsto_nhdsWithin_nhds
dist_eq_norm
Complex.norm_real
Filter.tendsto_map'_iff

---

โ† Back to Index