Documentation Verification Report

AbsMax

๐Ÿ“ Source: Mathlib/Analysis/Complex/AbsMax.lean

Statistics

MetricCount
Definitions0
TheoremseqOn_closedBall_of_isMaxOn_norm, eqOn_closure_of_eqOn_frontier, eqOn_closure_of_isPreconnected_of_isMaxOn_norm, eqOn_of_eqOn_frontier, eqOn_of_isPreconnected_of_isMaxOn_norm, eq_const_of_exists_le, eq_const_of_exists_max, eq_of_isMaxOn_of_ball_subset, eventually_eq_of_isLocalMax_norm, eventually_eq_or_eq_zero_of_isLocalMin_norm, exists_mem_frontier_isMaxOn_norm, isOpen_setOf_mem_nhds_and_isMaxOn_norm, norm_eqOn_closedBall_of_isMaxOn, norm_eqOn_closure_of_isPreconnected_of_isMaxOn, norm_eqOn_of_isPreconnected_of_isMaxOn, norm_eq_norm_of_isMaxOn_of_ball_subset, norm_eventually_eq_of_isLocalMax, norm_le_of_forall_mem_frontier_norm_le, norm_max_auxโ‚, norm_max_auxโ‚‚, norm_max_auxโ‚ƒ
21
Total21

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
eqOn_closedBall_of_isMaxOn_norm ๐Ÿ“–mathematicalDiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOn
Metric.closedBall
โ€”eq_of_isMaxOn_of_ball_subset
Metric.ball_subset_ball
eqOn_closure_of_eqOn_frontier ๐Ÿ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Set.EqOn
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closureโ€”norm_le_of_forall_mem_frontier_norm_le
DiffContOnCl.sub
sub_self
norm_zero
eqOn_closure_of_isPreconnected_of_isMaxOn_norm ๐Ÿ“–mathematicalIsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsOpen
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Set
Set.instMembership
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOn
closure
โ€”Set.EqOn.of_subset_closure
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
eqOn_of_isPreconnected_of_isMaxOn_norm
DiffContOnCl.differentiableOn
DiffContOnCl.continuousOn
continuousOn_const
subset_closure
Set.Subset.rfl
eqOn_of_eqOn_frontier ๐Ÿ“–โ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Set.EqOn
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
โ€”โ€”Set.EqOn.mono
subset_closure
eqOn_closure_of_eqOn_frontier
eqOn_of_isPreconnected_of_isMaxOn_norm ๐Ÿ“–mathematicalIsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsOpen
DifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
Set
Set.instMembership
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOnโ€”norm_eqOn_of_isPreconnected_of_isMaxOn
DifferentiableOn.add_const
IsMaxOn.norm_add_self
eq_of_norm_eq_of_norm_add_eq
SameRay.norm_add
SameRay.rfl
Real.instIsStrictOrderedRing
eq_const_of_exists_le ๐Ÿ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Real
Real.instLE
Real.instZero
Real.instLT
Set
Set.instMembership
Metric.closedBall
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOnโ€”IsCompact.exists_isMaxOn
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ProperSpace.isCompact_closedBall
Metric.nonempty_closedBall
ContinuousOn.norm
ContinuousOn.mono
DifferentiableOn.continuousOn
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Metric.closedBall_subset_ball
eq_const_of_exists_max
LE.le.trans
Metric.mem_ball_self
LE.le.trans_lt
eq_const_of_exists_max ๐Ÿ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instMembership
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOnโ€”eqOn_of_isPreconnected_of_isMaxOn_norm
Convex.isPreconnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_ball
Metric.isOpen_ball
eq_of_isMaxOn_of_ball_subset ๐Ÿ“–โ€”DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set
Set.instHasSubset
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Dist.dist
PseudoMetricSpace.toDist
โ€”โ€”norm_eq_norm_of_isMaxOn_of_ball_subset
DiffContOnCl.add_const
IsMaxOn.norm_add_self
eq_of_norm_eq_of_norm_add_eq
SameRay.norm_add
SameRay.rfl
Real.instIsStrictOrderedRing
eventually_eq_of_isLocalMax_norm ๐Ÿ“–โ€”Filter.Eventually
DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
nhds
IsLocalMax
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
โ€”โ€”Filter.HasBasis.eventually_iff
Metric.nhds_basis_closedBall
Filter.Eventually.and
eqOn_closedBall_of_isMaxOn_norm
DifferentiableOn.diffContOnCl
DifferentiableAt.differentiableWithinAt
Metric.closure_ball_subset_closedBall
Metric.ball_subset_closedBall
eventually_eq_or_eq_zero_of_isLocalMin_norm ๐Ÿ“–mathematicalFilter.Eventually
DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
addCommGroup
instModuleSelf
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
nhds
IsLocalMin
Real
Real.instPreorder
Norm.norm
instNorm
instZeroโ€”ContinuousAt.eventually_ne
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
DifferentiableAt.continuousAt
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
Filter.Eventually.self_of_nhds
IsLocalMin.inv
Real.instIsStrictOrderedRing
Filter.Eventually.mono
norm_pos_iff
IsLocalMax.congr
Filter.Eventually.of_forall
norm_inv
Filter.mp_mem
Filter.univ_mem'
DifferentiableAt.inv
eventually_eq_of_isLocalMax_norm
UniformConvexSpace.toStrictConvexSpace
InnerProductSpace.toUniformConvexSpace
exists_mem_frontier_isMaxOn_norm ๐Ÿ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Nonempty
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Set
Set.instMembership
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
closure
โ€”Bornology.IsBounded.isCompact_closure
FiniteDimensional.proper_real
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.complexToReal
Module.Projective.of_free
Module.Free.of_divisionRing
IsCompact.exists_isMaxOn
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Set.Nonempty.closure
ContinuousOn.norm
DiffContOnCl.continuousOn
Set.mem_union
closure_eq_interior_union_frontier
ne_top_of_le_ne_top
IsCompact.ne_univ
RealNormedSpace.noncompactSpace
interior_subset_closure
exists_mem_frontier_infDist_compl_eq_dist
frontier_interior_subset
LE.le.trans_eq
Membership.mem.out
norm_eq_norm_of_isMaxOn_of_ball_subset
IsMaxOn.on_subset
subset_closure
dist_comm
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_infDist_compl_subset
interior_subset
isOpen_setOf_mem_nhds_and_isMaxOn_norm ๐Ÿ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
IsOpen
setOf
Set
Filter
Filter.instMembership
nhds
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
โ€”isOpen_iff_mem_nhds
Filter.Eventually.and
eventually_eventually_nhds
DifferentiableOn.eventually_differentiableAt
Filter.Eventually.mono
norm_eventually_eq_of_isLocalMax
IsMaxOn.isLocalMax
le_trans
Membership.mem.out
Eq.ge
norm_eqOn_closedBall_of_isMaxOn ๐Ÿ“–mathematicalDiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOn
Metric.closedBall
โ€”eq_or_ne
dist_comm
Metric.mem_closedBall
Differentiable.add_const
Differentiable.smul_const
NormedSpace.toIsBoundedSMul
IsScalarTower.left
differentiable_id
dist_zero_right
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Set.MapsTo.mono
LipschitzWith.mapsTo_ball
lipschitzWith_lineMap
nndist_eq_zero
Set.Subset.rfl
AffineMap.lineMap_apply_zero
mul_one
Metric.ball_subset_ball
norm_max_auxโ‚ƒ
DiffContOnCl.comp
Differentiable.diffContOnCl
IsMaxOn.comp_mapsTo
AffineMap.lineMap_apply_one
norm_eqOn_closure_of_isPreconnected_of_isMaxOn ๐Ÿ“–mathematicalIsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsOpen
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Set
Set.instMembership
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOn
closure
โ€”Set.EqOn.of_subset_closure
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
norm_eqOn_of_isPreconnected_of_isMaxOn
DiffContOnCl.differentiableOn
ContinuousOn.norm
DiffContOnCl.continuousOn
continuousOn_const
subset_closure
Set.Subset.rfl
norm_eqOn_of_isPreconnected_of_isMaxOn ๐Ÿ“–mathematicalIsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
IsOpen
DifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
Set
Set.instMembership
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set.EqOnโ€”le_antisymm
IsOpen.mem_nhds_iff
isOpen_setOf_mem_nhds_and_isMaxOn_norm
ContinuousOn.isOpen_inter_preimage
ContinuousOn.norm
DifferentiableOn.continuousOn
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
isOpen_ne
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Set.disjoint_left
LE.le.trans_eq
Membership.mem.out
eq_or_ne
IsPreconnected.subset_left_of_subset_union
norm_eq_norm_of_isMaxOn_of_ball_subset ๐Ÿ“–โ€”DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Set
Set.instHasSubset
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Dist.dist
PseudoMetricSpace.toDist
โ€”โ€”norm_eqOn_closedBall_of_isMaxOn
DiffContOnCl.mono
IsMaxOn.on_subset
Metric.mem_closedBall
le_rfl
norm_eventually_eq_of_isLocalMax ๐Ÿ“–โ€”Filter.Eventually
DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
nhds
IsLocalMax
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
โ€”โ€”Filter.HasBasis.eventually_iff
Metric.nhds_basis_closedBall
Filter.Eventually.and
norm_eqOn_closedBall_of_isMaxOn
DifferentiableOn.diffContOnCl
DifferentiableAt.differentiableWithinAt
Metric.closure_ball_subset_closedBall
Metric.ball_subset_closedBall
norm_le_of_forall_mem_frontier_norm_le ๐Ÿ“–โ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
โ€”โ€”Set.mem_union
Set.union_comm
closure_eq_self_union_frontier
exists_ne
Differentiable.add_const
Differentiable.smul_const
NormedSpace.toIsBoundedSMul
IsScalarTower.left
differentiable_id
antilipschitzWith_lineMap
DiffContOnCl.comp
Differentiable.diffContOnCl
Set.mapsTo_preimage
AffineMap.lineMap_apply_zero
exists_mem_frontier_isMaxOn_norm
instNontrivial
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
AntilipschitzWith.isBounded_preimage
subset_closure
Continuous.frontier_preimage_subset
Differentiable.continuous
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
norm_max_auxโ‚ ๐Ÿ“–โ€”DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Dist.dist
PseudoMetricSpace.toDist
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Metric.closedBall
โ€”โ€”Metric.mem_closedBall
le_rfl
LE.le.antisymm
isMaxOn_iff
not_lt
dist_pos
LT.lt.ne
Nat.instAtLeastTwoHAddOfNat
Metric.sphere_subset_closedBall
circleIntegral.norm_integral_lt_of_norm_le_const_of_lt
ContinuousOn.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ContinuousOn.invโ‚€
IsTopologicalDivisionRing.toContinuousInvโ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousOn_id
continuousOn_const
sub_ne_zero
Metric.ne_of_mem_sphere
LT.lt.ne'
ContinuousOn.mono
DiffContOnCl.continuousOn_ball
le_div_iffโ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_smul
NormedSpace.toNormSMulClass
norm_inv
mul_comm
mul_inv_cancel_leftโ‚€
div_eq_inv_mul
div_lt_div_iff_of_pos_right
mul_div_cancelโ‚€
mul_assoc
DiffContOnCl.circleIntegral_sub_inv_smul
Metric.mem_ball_self
norm_mul
norm_ofNat
norm_real
norm_I
mul_one
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
IsCancelMulZero.toIsLeftCancelMulZero
Real.instIsOrderedAddMonoid
LT.lt.le
Real.pi_pos
RCLike.charZero_rclike
norm_max_auxโ‚‚ ๐Ÿ“–โ€”DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Dist.dist
PseudoMetricSpace.toDist
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
Metric.closedBall
โ€”โ€”SeminormedAddCommGroup.to_isUniformAddGroup
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
UniformSpace.Completion.norm_coe
norm_max_auxโ‚
UniformSpace.Completion.completeSpace
Differentiable.comp_diffContOnCl
ContinuousLinearMap.differentiable
norm_max_auxโ‚ƒ ๐Ÿ“–โ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
IsMaxOn
Real
Real.instPreorder
Norm.norm
NormedAddCommGroup.toNorm
โ€”โ€”eq_or_ne
norm_max_auxโ‚‚
IsMaxOn.closure
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ContinuousOn.norm
DiffContOnCl.continuousOn
closure_ball
dist_ne_zero

---

โ† Back to Index