Documentation Verification Report

Angle

πŸ“ Source: Mathlib/Analysis/Complex/Angle.lean

Statistics

MetricCount
Definitions0
Theoremsangle_div_left_eq_angle_mul_right, angle_div_right_eq_angle_mul_left, angle_eq_abs_arg, angle_exp_exp, angle_exp_one, angle_le_mul_norm_sub, angle_mul_left, angle_mul_right, angle_one_left, angle_one_right, mul_angle_le_norm_sub, norm_sub_le_angle, norm_sub_mem_Icc_angle
13
Total13

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
angle_div_left_eq_angle_mul_right πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”eq_or_ne
Nat.instAtLeastTwoHAddOfNat
div_zero
InnerProductGeometry.angle_zero_left
MulZeroClass.mul_zero
InnerProductGeometry.angle_zero_right
angle_mul_right
div_mul_cancelβ‚€
angle_div_right_eq_angle_mul_left πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”InnerProductGeometry.angle_comm
angle_div_left_eq_angle_mul_right
angle_eq_abs_arg πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
abs
Real
Real.lattice
Real.instAddGroup
arg
DivInvMonoid.toDiv
instDivInvMonoid
β€”Real.arccos_eq_of_eq_cos
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_arg_le_pi
Real.cos_abs
cos_arg
div_ne_zero
mul_neg
sub_neg_eq_add
div_eq_mul_inv
mul_inv_rev
inv_re
normSq_eq_norm_sq
inv_im
neg_mul
norm_mul
norm_inv
inv_inv
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
norm_pos_iff
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
angle_exp_exp πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
exp
instMul
ofReal
I
abs
Real
Real.lattice
Real.instAddGroup
toIocMod
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
Real.instSub
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
angle_eq_abs_arg
exp_ne_zero
arg_exp_mul_I
angle_exp_one πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
exp
instMul
ofReal
I
instOne
abs
Real
Real.lattice
Real.instAddGroup
toIocMod
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
MulZeroClass.zero_mul
exp_zero
toIocMod.congr_simp
sub_zero
angle_exp_exp
angle_le_mul_norm_sub πŸ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Real.instLE
InnerProductGeometry.angle
instNormedAddCommGroup
instInnerProductSpaceRealComplex
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
β€”Nat.instAtLeastTwoHAddOfNat
div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_pos
Real.pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_eq_inv_mul
inv_div
mul_angle_le_norm_sub
angle_mul_left πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instMul
β€”eq_or_ne
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
InnerProductGeometry.angle_zero_right
InnerProductGeometry.angle_zero_left
angle_eq_abs_arg
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
mul_div_mul_left
angle_mul_right πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instMul
β€”mul_comm
angle_mul_left
angle_one_left πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instOne
abs
Real
Real.lattice
Real.instAddGroup
arg
β€”angle_eq_abs_arg
NeZero.charZero_one
instCharZero
one_div
abs_arg_inv
angle_one_right πŸ“–mathematicalβ€”InnerProductGeometry.angle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instOne
abs
Real
Real.lattice
Real.instAddGroup
arg
β€”angle_eq_abs_arg
NeZero.charZero_one
instCharZero
div_one
mul_angle_le_norm_sub πŸ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Real.instLE
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InnerProductGeometry.angle
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instSub
β€”Nat.instAtLeastTwoHAddOfNat
norm_sub_mem_Icc_angle
norm_sub_le_angle πŸ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Real.instLE
instSub
InnerProductGeometry.angle
instNormedAddCommGroup
instInnerProductSpaceRealComplex
β€”Nat.instAtLeastTwoHAddOfNat
norm_sub_mem_Icc_angle
norm_sub_mem_Icc_angle πŸ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InnerProductGeometry.angle
instNormedAddCommGroup
instInnerProductSpaceRealComplex
instSub
β€”Nat.instAtLeastTwoHAddOfNat
norm_eq_one_iff'
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.two_pi_pos
angle_exp_one
exp_mul_I
add_sub_right_comm
toIocMod_eq_self
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
norm_add_mul_I
Real.le_sqrt_of_sq_le
mul_pow
abs_pow
Real.instIsOrderedRing
abs_sq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isNat_mul
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
sub_le_sub_left
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
Real.cos_le_one_sub_mul_cos_sq
abs_le
Set.Ioc_subset_Icc_self
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Real.cos_sq_add_sin_sq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Real.sqrt_le_left
abs_nonneg
Real.one_sub_sq_div_two_le_cos
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Meta.NormNum.isNNRat_mul
norm_div
div_one
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
one_mul
div_sub_one
norm_zero
NeZero.charZero_one
angle_div_left_eq_angle_mul_right

---

← Back to Index