Documentation Verification Report

Asymptotics

📁 Source: Mathlib/Analysis/Complex/Asymptotics.lean

Statistics

MetricCount
Definitions0
TheoremsisBigO_comp_ofReal_nhds, isBigO_comp_ofReal_nhds_ne, isBigO_im_sub_im, isBigO_ofReal_left, isBigO_ofReal_right, isBigO_re_sub_re, isLittleO_ofReal_left, isLittleO_ofReal_right, isTheta_ofReal, isTheta_ofReal_left, isTheta_ofReal_right, cast_complex_isTheta_cast_real
12
Total12

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
isBigO_comp_ofReal_nhds 📖mathematicalAsymptotics.IsBigO
Complex
instNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ofReal
Real
Real.pseudoMetricSpace
Asymptotics.IsBigO.comp_tendsto
Continuous.tendsto
continuous_ofReal
isBigO_comp_ofReal_nhds_ne 📖mathematicalAsymptotics.IsBigO
Complex
instNorm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ofReal
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Real
Real.pseudoMetricSpace
Asymptotics.IsBigO.comp_tendsto
ContinuousWithinAt.tendsto_nhdsWithin
Continuous.continuousWithinAt
continuous_ofReal
isBigO_im_sub_im 📖mathematicalAsymptotics.IsBigO
Complex
Real
Real.norm
instNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.instSub
im
instSub
Asymptotics.isBigO_of_le
abs_im_le_norm
isBigO_ofReal_left 📖mathematicalAsymptotics.IsBigO
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isBigO_congr_left
isTheta_ofReal
isBigO_ofReal_right 📖mathematicalAsymptotics.IsBigO
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isBigO_congr_right
isTheta_ofReal
isBigO_re_sub_re 📖mathematicalAsymptotics.IsBigO
Complex
Real
Real.norm
instNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.instSub
re
instSub
Asymptotics.isBigO_of_le
abs_re_le_norm
isLittleO_ofReal_left 📖mathematicalAsymptotics.IsLittleO
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isLittleO_congr_left
isTheta_ofReal
isLittleO_ofReal_right 📖mathematicalAsymptotics.IsLittleO
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isLittleO_congr_right
isTheta_ofReal
isTheta_ofReal 📖mathematicalAsymptotics.IsTheta
Complex
Real
instNorm
Real.norm
ofReal
Asymptotics.IsTheta.of_norm_left
norm_real
Asymptotics.IsTheta.norm_left
Asymptotics.isTheta_rfl
isTheta_ofReal_left 📖mathematicalAsymptotics.IsTheta
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isTheta_congr_left
isTheta_ofReal
isTheta_ofReal_right 📖mathematicalAsymptotics.IsTheta
Complex
instNorm
ofReal
Real
Real.norm
Asymptotics.IsTheta.isTheta_congr_right
isTheta_ofReal

Int

Theorems

NameKindAssumesProvesValidatesDepends On
cast_complex_isTheta_cast_real 📖mathematicalAsymptotics.IsTheta
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instIntCast
Real.instIntCast
Asymptotics.IsTheta.of_norm_eventuallyEq_norm
Filter.univ_mem'
Complex.norm_intCast

---

← Back to Index