| Name | Category | Theorems |
coeHom π | CompOp | 1 mathmath: coeHom_apply
|
exp π | CompOp | 38 mathmath: periodic_exp, exp_arg, AddCircle.homeomorphCircle'_apply_mk, exp_natCast_mul, isAddQuotientCoveringMap_exp, exp_eq_exp, exp_two_pi_mul_int, AddCircle.scaled_exp_map_periodic, exp_two_pi, exp_sub, exp_neg, exp_inj, exp_add_two_pi, invOn_arg_exp, Real.Angle.toCircle_coe, exp_add, leftInverse_exp_arg, argEquiv_symm_apply, AddCircle.toCircle_apply_mk, Real.probChar_apply', exp_zero, exp_int_mul_two_pi, surjOn_exp_neg_pi_pi, exp_intCast_mul, Real.fourierChar_apply', isLocalHomeomorph_circleExp, expHom_apply, arg_exp, coe_exp, exp_zsmul, exp_eq_one, isCoveringMap_exp, AddChar.zmod_intCast, exp_sub_two_pi, argPartialEquiv_symm_apply, ZMod.toCircle_eq_circleExp, exp_nsmul, contMDiff_circleExp
|
expHom π | CompOp | 1 mathmath: expHom_apply
|
instCoeOut π | CompOp | β |
instCommGroup π | CompOp | 108 mathmath: Real.hasFDerivAt_fourierChar_neg_bilinear_left, Complex.UnitDisc.instIsScalarTower_circle, Real.fourierIntegral_eq, Real.Angle.toCircle_add, Real.fderiv_fourierChar_neg_bilinear_right_apply, exp_natCast_mul, AddCircle.toCircle_add, Complex.UnitDisc.instSMulCommClass_closedBall_circle, rotation_injective, starRingEnd_addChar, tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support, rotation_apply, toMatrix_rotation, exp_two_pi_mul_int, Complex.UnitDisc.coe_smul_circle, Complex.UnitDisc.instIsScalarTower_circle_circle, Complex.UnitDisc.instSMulCommClass_circle_left, AddChar.zmod_add, tendsto_integral_exp_smul_cocompact, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, Real.fourier_real_eq, exp_two_pi, Real.fourierIntegral_convergent_iff', Real.Angle.toCircle_zero, exp_sub, isQuotientCoveringMap_zpow, Real.continuous_probChar, exp_neg, instIsTopologicalGroup, coe_inv_eq_conj, coe_mul, coe_pow, fourierIntegral_eq_half_sub_half_period_translate, linear_isometry_complex, star_addChar, rotationOf_rotation, bijective_rootsOfUnityAddChar, Real.fourier_eq, AddCircle.toCircle_zero, exp_add, tendsto_integral_exp_smul_cocompact_of_inner_product, AddCircle.toCircle_zsmul, surjective_rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar, instIsUniformGroup, isQuotientCoveringMap_npow, rotation_trans, instHasEnoughRootsOfUnityCircle, Real.probChar_apply', exp_zero, Complex.UnitDisc.instSMulCommClass_circle_right, Real.fourierIntegral_convergent_iff, Real.hasDerivAt_fourierChar, linearEquiv_det_rotation, coe_eq_one, Real.fourierChar_apply, Real.fourier_bilin_convolution_eq_integral, exp_int_mul_two_pi, Real.tendsto_integral_exp_smul_cocompact, fourierIntegral_half_period_translate, coe_inv, exp_intCast_mul, Real.Angle.toCircle_neg, Real.fourierChar_apply', Real.differentiable_fourierChar, Real.continuous_fourierChar, rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar_val, ZMod.toCircle_intCast, ZMod.toCircle_natCast, Real.deriv_fourierChar, Complex.UnitDisc.instSMulCommClass_circle_closedBall, Real.differentiable_fourierChar_neg_bilinear_right, ZMod.injective_toCircle, coeHom_apply, rootsOfUnityCircleEquiv_apply, VectorFourier.fourierIntegral_comp_add_right, AddChar.zmod_zero, tendsto_integral_exp_inner_smul_cocompact, det_rotation, Fourier.fourierIntegral_def, expHom_apply, rotation_symm, Real.hasFDerivAt_fourierChar_neg_bilinear_right, ZMod.toCircle_apply, Real.differentiable_fourierChar_neg_bilinear_left, exp_zsmul, exp_eq_one, toUnits_apply, Real.fourierInv_eq, Real.probChar_apply, AddChar.zmod_intCast, AddCircle.toCircle_nsmul, coe_zpow, VectorFourier.hasFDerivAt_fourierChar_smul, Real.fourierIntegral_real_eq, AddChar.zmodAddEquiv_apply, coe_div, coe_one, AddChar.zmod_injective, Real.fourierIntegralInv_eq, Real.fderiv_fourierChar_neg_bilinear_left_apply, AddCircle.toCircle_neg, Fourier.fourierIntegral_comp_add_right, ZMod.rootsOfUnityAddChar_val, ZMod.toCircle_eq_circleExp, exp_nsmul, Complex.UnitDisc.coe_circle_smul, ZMod.stdAddChar_apply, MeasureTheory.charFun_eq_integral_probChar
|
instDistribMulAction π | CompOp | β |
instMetricSpace π | CompOp | β |
instMulAction π | CompOp | β |
instSMul π | CompOp | 28 mathmath: Real.fourierIntegral_eq, tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support, instIsScalarTower, tendsto_integral_exp_smul_cocompact, Real.fourier_real_eq, smul_def, Real.fourierIntegral_convergent_iff', instSMulCommClass_left, VectorFourier.fourierIntegral_convergent_iff, fourierIntegral_eq_half_sub_half_period_translate, instSMulCommClass_right, instContinuousSMul, VectorFourier.integral_fourierIntegral_swap, Real.fourier_eq, tendsto_integral_exp_smul_cocompact_of_inner_product, Real.fourierIntegral_convergent_iff, Real.fourier_bilin_convolution_eq_integral, Real.tendsto_integral_exp_smul_cocompact, fourierIntegral_half_period_translate, VectorFourier.fourierIntegral_comp_add_right, tendsto_integral_exp_inner_smul_cocompact, Fourier.fourierIntegral_def, Real.fourierInv_eq, VectorFourier.hasFDerivAt_fourierChar_smul, Real.fourierIntegral_real_eq, Real.fourierIntegralInv_eq, Fourier.fourierIntegral_comp_add_right, norm_smul
|
instUniformSpace π | CompOp | 1 mathmath: instIsUniformGroup
|
ofConjDivSelf π | CompOp | 1 mathmath: ofConjDivSelf_coe
|
toUnits π | CompOp | 1 mathmath: toUnits_apply
|