Documentation Verification Report

Exponential

πŸ“ Source: Mathlib/Analysis/Complex/Exponential.lean

Statistics

MetricCount
Definitionsexp, exp', expMonoidHom, termCexp, evalExp, exp, expMonoidHom, expNear, termRexp
9
TheoremsexpMonoidHom_apply, exp_add, exp_bound, exp_bound', exp_conj, exp_def, exp_int_mul, exp_list_sum, exp_multiset_sum, exp_nat_mul, exp_ne_zero, exp_neg, exp_nsmul, exp_nsmul', exp_ofReal_im, exp_ofReal_re, exp_sub, exp_sum, exp_zero, isCauSeq_exp, isCauSeq_norm_exp, norm_exp_le_exp_norm, norm_exp_ofReal, norm_exp_sub_one_le, norm_exp_sub_one_sub_id_le, norm_exp_sub_sum_le_exp_norm_sub_sum, norm_exp_sub_sum_le_norm_mul_exp, ofReal_exp, ofReal_exp_ofReal_re, sum_div_factorial_le, abs_exp, abs_exp_sub_one_le, abs_exp_sub_one_sub_id_le, add_one_le_exp, add_one_lt_exp, expMonoidHom_apply, expNear_sub, expNear_succ, expNear_zero, exp_1_approx_succ_eq, exp_abs_le, exp_add, exp_approx_end, exp_approx_end', exp_approx_start, exp_approx_succ, exp_bound, exp_bound', exp_bound_div_one_sub_of_interval, exp_bound_div_one_sub_of_interval', exp_eq_exp, exp_eq_one_iff, exp_injective, exp_le_exp, exp_le_exp_of_le, exp_le_one_iff, exp_list_sum, exp_lt_exp, exp_lt_exp_of_lt, exp_lt_one_iff, exp_monotone, exp_multiset_sum, exp_nat_mul, exp_ne_zero, exp_neg, exp_nonneg, exp_nsmul, exp_pos, exp_strictMono, exp_sub, exp_sum, exp_zero, le_inv_mul_exp, norm_exp_sub_one_sub_id_le, one_le_exp, one_le_exp_iff, one_lt_exp_iff, one_sub_div_pow_le_exp_neg, one_sub_le_exp_neg, one_sub_lt_exp_neg, pow_div_factorial_le_exp, quadratic_le_exp_of_nonneg, sum_le_exp_of_nonneg
83
Total92

Complex

Definitions

NameCategoryTheorems
exp πŸ“–CompOp
342 mathmath: ProbabilityTheory.integrable_cexp_mul_of_re_mem_integrableExpSet, ProbabilityTheory.isGaussian_iff_gaussian_charFun, nnnorm_exp_I_mul_ofReal, continuousOn_exp, GaussianFourier.integrable_cexp_neg_mul_sq_add_real_mul_I, EisensteinSeries.hasSum_e2Summand_symmetricIcc, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I, HurwitzZeta.hasSum_int_cosKernelβ‚€, exp_eq_exp_iff_exists_int, Real.fourierIntegralInv_eq', comap_exp_cobounded, cos_sub_sin_I, MeasureTheory.charFunDual_apply, isLittleO_exp_neg_mul_sq_cocompact, ProbabilityTheory.hasGaussianLaw_iff_charFunDual_map_eq, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, isCoveringMap_exp, ContDiffWithinAt.cexp, ModularForm.eta_q_eq_pow, locally_lipschitz_exp, ZMod.LFunction_one_sub, exp_re, tsum_exp_neg_mul_int_sq, exp_add_mul_I, GaussianFourier.integral_cexp_neg_mul_sq_norm, angle_exp_one, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, norm_eq_one_iff', ProbabilityTheory.integrable_rpow_mul_cexp_of_re_mem_interior_integrableExpSet, fourierIntegral_gaussian_innerProductSpace', fourier_gaussian_pi', iteratedDerivWithin_tsum_cexp_eq, jacobiThetaβ‚‚_functional_equation, ProbabilityTheory.hasGaussianLaw_iff_charFun_map_eq, exp_eq_exp_β„‚, GaussianFourier.integral_cexp_neg_mul_sq_norm_add, norm_cexp_neg_mul_sq, hasStrictFDerivAt_exp_real, Real.norm_exp_I_mul_ofReal_sub_one_le, Real.vector_fourierIntegral_eq_integral_exp_smul, HurwitzZeta.evenKernel_def, Real.fourier_real_eq_integral_exp_smul, hasSum_nat_jacobiTheta, exp_add, ZMod.stdAddChar_coe, Real.nnnorm_exp_I_mul_ofReal_sub_one_le, exp_def, HurwitzZeta.oddKernel_def', fourier_gaussian_innerProductSpace, sinh_add_cosh, isPrimitiveRoot_exp_rat, tendsto_exp_nhds_zero_iff, mem_rootsOfUnity, MeasureTheory.charFun_apply, cexp_tsum_eq_tprod, two_sinh, exp_zero, exp_antiperiodic, MeasureTheory.charFun_apply_real, exp_add_pi_mul_I, log_exp_eq_re_add_toIocMod, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, LindemannWeierstrass.exp_polynomial_approx, Differentiable.cexp, cos_eq_iff_quadratic, integral_exp_mul_complex_Ioi, ProbabilityTheory.integrable_rpow_abs_mul_cexp_of_re_mem_interior_integrableExpSet, ContDiff.cexp, exp_eq_exp_iff_exp_sub_eq_one, tendsto_one_add_cpow_exp_of_tendsto, exp_nsmul, AnalyticWithinAt.cexp, tendsto_exp_comap_re_atTop, ofReal_cpow_of_nonpos, exp_ofReal_re, HurwitzZeta.expZeta_one_sub, ContinuousAt.cexp, fourierIntegral_gaussian_pi, norm_exp_I_mul_ofReal_sub_one, integral_exp_mul_complex, comap_exp_nhds_zero, HasSum.cexp, map_exp_comap_re_atTop, differentiable_exp, norm_eq_one_iff, exp_ofReal_mul_I_re, fourier_gaussian_innerProductSpace', HurwitzZeta.hasSum_int_cosKernel, IsExpCmpFilter.isLittleO_exp_cpow, Real.tendsto_integral_gaussian_smul', exp_neg_pi_div_two_mul_I, GaussianFourier.integrable_cexp_neg_mul_sum_add, exp_nsmul', Continuous.cexp, Polynomial.int_cyclotomic_rw, tendsto_one_add_div_pow_exp, isIntegral_exp_rat_mul_pi_mul_I, riemannZeta_eulerProduct_exp_log, HasStrictFDerivAt.cexp, ProbabilityTheory.IsGaussian.charFun_eq', integral_mul_cexp_neg_mul_sq, isPrimitiveRoot_iff, exp_periodic, norm_exp_mul_sq_le, comap_exp_nhdsNE, exp_nat_mul_two_pi_mul_I, log_exp_eq_sub_toIocDiv, norm_exp_sub_sum_le_norm_mul_exp, logDeriv_exp, ProbabilityTheory.complexMGF_gaussianReal, isPrimitiveRoot_exp_of_isCoprime, integral_exp_mul_I_eq_sinc, UpperHalfPlane.norm_exp_two_pi_I_lt_one, HurwitzZeta.hasSum_int_cosZeta, arg_exp_mul_I, ProbabilityTheory.IsGaussian.charFunDual_eq_of_forall_strongDual_eq_zero, BoundedContinuousFunction.innerProbChar_apply, Measurable.cexp, HasFDerivWithinAt.cexp, EisensteinSeries.hasSum_e2Summand_symmetricIco, ModularForm.eta_q_eq_cexp, EisensteinSeries.q_expansion_riemannZeta, Real.fourierIntegral_real_eq_integral_exp_smul, map_exp_comap_re_atBot, fourier_coe_apply, integral_exp_mul_I_eq_sin, HasStrictDerivAt.cexp, cos_add_sin_I, ProbabilityTheory.isGaussian_iff_charFun_eq, differentiableAt_exp, iter_deriv_exp, HasFDerivAt.cexp, HurwitzZeta.hasSum_expZeta_of_one_lt_re, UniformContinuousOn.cexp, exp_neg, continuous_exp, ModularForm.logDeriv_one_sub_mul_cexp_comp, tendsto_exp_comap_re_atBot, exp_list_sum, ofReal_exp, exp_ofReal_mul_I_im, AnalyticOnNhd.cexp, derivWithin_cexp, analyticOnNhd_cexp, ProbabilityTheory.IsGaussian.charFunDual_eq, tsum_exp_neg_quadratic, isAddQuotientCoveringMap_exp, cot_pi_eq_exp_ratio, exp_ofReal_im, contDiff_exp, HurwitzZeta.hasSum_int_sinKernel, two_cosh, HurwitzZeta.LSeriesHasSum_exp, deriv_cexp, isPrimitiveRoot_exp_of_coprime, MeasureTheory.charFunDual_map_const_add, MeasureTheory.charFunDual_map_add_const, exp_pi_div_two_mul_I, integral_cexp_quadratic, measurable_exp, norm_mul_exp_arg_mul_I, isPrimitiveRoot_exp_rat_of_even_num, isPrimitiveRoot_exp, ProbabilityTheory.isGaussian_iff_gaussian_charFunDual, ModularForm.logDeriv_one_sub_cexp, isIntegral_exp_neg_rat_mul_pi_mul_I, circleMap_zero, integrableOn_exp_mul_complex_Iic, Real.fourierIntegral_eq', contDiffOn_tsum_cexp, fourierIntegral_gaussian_innerProductSpace, ProbabilityTheory.HasGaussianLaw.charFun_map_eq, cexp_neg_quadratic_isLittleO_abs_rpow_cocompact, EisensteinSeries.qExpansion_identity_pnat, isCoveringMapOn_exp, log_exp, norm_exp_ofReal, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I', ofReal_exp_ofReal_re, tendsto_one_add_div_cpow_exp, jacobiThetaβ‚‚'_add_left', jacobiThetaβ‚‚'_functional_equation, expMonoidHom_apply, exp_sub_sum_range_succ_isLittleO_pow, ProbabilityTheory.integrable_cexp_mul_of_re_mem_interior_integrableExpSet, AEMeasurable.cexp, exp_sub_sum_range_isBigO_pow, IsExpCmpFilter.isLittleO_zpow_mul_exp, exp_sub_cosh, enorm_exp_I_mul_ofReal, analyticOn_cexp, exp_bound, LindemannWeierstrass.integral_exp_mul_eval, Real.tendsto_integral_cexp_sq_smul, hasStrictDerivAt_exp, Real.enorm_exp_I_mul_ofReal_sub_one_le, EisensteinSeries.q_expansion_bernoulli, LogDeriv_exp, DirichletCharacter.LSeries_eulerProduct_exp_log, Real.fourierChar_apply, GaussianFourier.integral_cexp_neg_mul_sq_add_real_mul_I, GaussianFourier.integral_cexp_neg_mul_sum_add, ProbabilityTheory.isGaussian_iff_charFunDual_eq, fourierIntegral_gaussian, norm_exp_sub_one_le, norm_exp, HurwitzZeta.hurwitzZeta_one_sub, integral_gaussian_sq_complex, exp_pi_mul_I, isPrimitiveRoot_exp_rat_of_odd_num, TendstoUniformlyOn.comp_cexp, ProbabilityTheory.HasGaussianLaw.charFunDual_map_eq_fun, exp_sub_pi_mul_I, Set.Countable.preimage_cexp, exp_conj, nnnorm_exp_ofReal_mul_I, HasDerivWithinAt.cexp, exp_sub_sinh, cexp_neg_quadratic_isLittleO_rpow_atTop, ProbabilityTheory.integrable_pow_abs_mul_cexp_of_re_mem_interior_integrableExpSet, exp_bound', ProbabilityTheory.integrable_pow_mul_cexp_of_re_mem_interior_integrableExpSet, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add, DifferentiableOn.cexp, ProbabilityTheory.complexMGF_id_gaussianReal, exp_rat_mul_pi_mul_I_pow_two_mul_den, HasDerivAt.cexp, exp_mem_slitPlane, MeasureTheory.charFunDual_dirac, EisensteinSeries.G2_eq_tsum_cexp, EisensteinSeries.qExpansion_identity, norm_exp_eq_iff_re_eq, GaussianFourier.integral_cexp_neg_sum_mul_add, tendsto_one_add_pow_exp_of_tendsto, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar_val, Filter.Tendsto.cexp, HurwitzZeta.hasSum_int_sinZeta, ZMod.toCircle_intCast, ArithmeticFunction.LSeries_zeta_eulerProduct_exp_log, ZMod.toCircle_natCast, cpow_eq_nhds', exp_eq_exp_re_mul_sin_add_cos, jacobiTheta_eq_tsum_nat, DifferentiableAt.cexp, ContDiffAt.cexp, cpow_def, Real.tendsto_integral_gaussian_smul, exp_sub, hasProd_of_hasSum_log, VectorFourier.fourierIntegral_probChar, MeasureTheory.charFun_dirac, cot_eq_exp_ratio, norm_exp_sub_one_sub_id_le, exp_nat_mul, fourier_coe_apply', norm_exp_le_exp_norm, IsExpCmpFilter.isLittleO_cpow_exp, ProbabilityTheory.IsGaussian.charFunDual_eq_of_integral_eq_zero, norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, exp_sum, ProbabilityTheory.IsGaussian.charFun_eq, integral_gaussian_complex, DifferentiableWithinAt.cexp, ZMod.toCircle_apply, GaussianFourier.integrable_cexp_neg_sum_mul_add, integral_exp_mul_complex_Iic, norm_exp_sub_sum_le_exp_norm_sub_sum, iteratedDeriv_cexp_const_mul, range_exp, jacobiThetaβ‚‚_add_left', norm_exp_ofReal_mul_I, Circle.coe_exp, exp_two_pi_mul_I, cpow_eq_nhds, arg_exp, IsExpCmpFilter.isLittleO_pow_mul_exp, integrable_cexp_quadratic, image_exp_Ioc_eq_sphere, exp_eq_one_iff, analyticWithinAt_cexp, exp_mul_I_antiperiodic, cpow_def_of_ne_zero, exp_mul_I, hasDerivAt_exp, HurwitzZeta.hasSum_int_completedCosZeta, TorusIntegrable.function_integrable, exp_log, integrable_mul_cexp_neg_mul_sq, isOpenMap_exp, ProbabilityTheory.IsGaussian.charFunDual_eq', enorm_exp_ofReal_mul_I, Real.probChar_apply, AnalyticAt.cexp', ProbabilityTheory.charFun_gaussianReal, HurwitzZeta.hasSum_int_completedSinZeta, Real.fourierInv_eq', norm_exp_I_mul_ofReal, integrable_cexp_quadratic', ContinuousWithinAt.cexp, exp_mul_I_periodic, ContDiffOn.cexp, integral_cpow_mul_exp_neg_mul_Ioi, range_exp_mul_I, MeasureTheory.charFun_map_const_add, IsExpCmpFilter.isLittleO_cpow_mul_exp, exp_multiset_sum, summable_pow_mul_cexp, ProbabilityTheory.HasGaussianLaw.charFunDual_map_eq, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, deriv_exp, Real.fourier_eq', integrable_cexp_neg_mul_sq, LindemannWeierstrass.hasDerivAt_cexp_mul_sumIDeriv, exp_int_mul, exp_int_mul_two_pi_mul_I, log_exp_exists, AnalyticAt.cexp, CFC.complex_exp_eq_normedSpace_exp, fourier_gaussian_pi, sinh_sub_cosh, exp_im, continuousAt_gaussian_integral, cosh_sub_sinh, EulerProduct.exp_tsum_primes_log_eq_tsum, fourierIntegral_gaussian_pi', integral_gaussian_complex_Ioi, MeasureTheory.charFun_map_add_const, two_sin, differentiableAt_iteratedDerivWithin_cexp, pi_mul_cot_pi_q_exp, cosh_add_sinh, BoundedContinuousFunction.probCharDual_apply, ContinuousOn.cexp, exp_bound_sq, tendsto_exp_comap_re_atBot_nhdsNE, integrableOn_exp_mul_complex_Ioi, angle_exp_exp, two_cos, AnalyticOn.cexp, countable_preimage_exp, analyticAt_cexp
exp' πŸ“–CompOp
1 mathmath: exp_def
expMonoidHom πŸ“–CompOp
1 mathmath: expMonoidHom_apply
termCexp πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
expMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
Complex
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
MonoidHom.instFunLike
expMonoidHom
exp
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
exp_add πŸ“–mathematicalβ€”exp
Complex
instAdd
instMul
β€”Finset.sum_congr
add_pow
div_eq_mul_inv
Finset.sum_mul
Nat.cast_ne_zero
instCharZero
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Nat.choose_pos
Finset.mem_range
Nat.choose_mul_factorial_mul_factorial
Nat.cast_mul
mul_inv
mul_assoc
mul_left_comm
mul_comm
inv_mul_cancelβ‚€
mul_one
Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
exp_def
isCauSeq_exp
CauSeq.lim_mul_lim
CauSeq.lim_eq_lim_of_equiv
cauchy_product
isCauSeq_norm_exp
exp_bound πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
exp
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
Real.instMul
Real.instMonoid
Real.instNatCast
Real.instInv
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
CauSeq.lim_const
exp_def
sub_eq_add_neg
CauSeq.lim_neg
CauSeq.lim_add
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
lim_norm
CauSeq.lim_le
CauSeq.le_of_exists
Finset.sum_range_sub_sum_range
Finset.sum_congr
mul_div_assoc
pow_add
add_tsub_cancel_of_le
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.mem_range
Finset.mem_filter
IsAbsoluteValue.abv_sum
Real.instIsOrderedRing
norm_mul
norm_pow
norm_div
norm_natCast
Finset.sum_le_sum
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_le_oneβ‚€
norm_nonneg
le_of_lt
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
pow_nonneg
IsOrderedRing.toZeroLEOneClass
one_div
sum_div_factorial_le
exp_bound' πŸ“–mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
Complex
instNorm
Real.instNatCast
Real.instOne
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
instSub
exp
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
Real.instMul
Real.instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
CauSeq.lim_const
exp_def
sub_eq_add_neg
CauSeq.lim_neg
CauSeq.lim_add
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
lim_norm
CauSeq.lim_le
CauSeq.le_of_exists
add_tsub_cancel_of_le
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.sum_range_add_sub_sum_range
IsAbsoluteValue.abv_sum
Real.instIsOrderedRing
Finset.sum_congr
norm_div
norm_pow
norm_natCast
Finset.sum_le_sum
Real.instIsOrderedAddMonoid
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
norm_nonneg
le_refl
mul_pos
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.factorial_mul_pow_le_factorial
pow_add
div_eq_inv_mul
mul_inv
mul_assoc
mul_left_comm
Finset.mul_sum
mul_le_mul_of_nonneg_left
geom_sum_eq
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_eq
neg_eq_zero
Mathlib.Tactic.Linarith.without_one_mul
sub_eq_zero_of_eq
div_le_iff_of_neg
lt_of_not_ge
le_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
CancelDenoms.neg_subst
CancelDenoms.mul_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
Nat.cast_succ
div_pow
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
Right.add_pos_of_nonneg_of_pos
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
exp_conj πŸ“–mathematicalβ€”exp
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
exp_def
lim_conj
CauSeq.ext
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
Finset.sum_congr
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
ofReal_natCast
conj_ofReal
exp_def πŸ“–mathematicalβ€”exp
CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
instIsComplete
exp'
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
exp_int_mul πŸ“–mathematicalβ€”exp
Complex
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”Int.cast_natCast
exp_nat_mul
zpow_natCast
Int.cast_negSucc
Nat.cast_add
Nat.cast_one
neg_add_rev
add_mul
Distrib.rightDistribClass
neg_mul
one_mul
exp_add
exp_neg
zpow_negSucc
pow_add
pow_one
mul_inv_rev
exp_list_sum πŸ“–mathematicalβ€”exp
Complex
instAdd
instZero
instMul
instOne
β€”map_list_prod
MonoidHom.instMonoidHomClass
exp_multiset_sum πŸ“–mathematicalβ€”exp
Multiset.sum
Complex
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Multiset.prod
CommRing.toCommMonoid
Multiset.map
β€”MonoidHom.map_multiset_prod
exp_nat_mul πŸ“–mathematicalβ€”exp
Complex
instMul
instNatCast
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.cast_zero
MulZeroClass.zero_mul
exp_zero
pow_zero
pow_succ
Nat.cast_add_one
add_mul
Distrib.rightDistribClass
exp_add
one_mul
exp_ne_zero πŸ“–β€”β€”β€”β€”zero_ne_one
NeZero.charZero_one
instCharZero
exp_zero
add_neg_cancel
exp_add
MulZeroClass.zero_mul
exp_neg πŸ“–mathematicalβ€”exp
Complex
instNeg
instInv
β€”mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
exp_ne_zero
exp_add
add_neg_cancel
exp_zero
mul_inv_cancelβ‚€
exp_nsmul πŸ“–mathematicalβ€”exp
Complex
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”MonoidHom.map_pow
exp_nsmul' πŸ“–mathematicalβ€”exp
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instNatCast
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”exp_nsmul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.Ring.nsmul_congr
Mathlib.Tactic.Ring.smul_eq_cast
Mathlib.Tactic.Ring.natCast_add
Mathlib.Tactic.Ring.natCast_mul
Mathlib.Tactic.Ring.natCast_nat
Mathlib.Tactic.Ring.natCast_zero
exp_ofReal_im πŸ“–mathematicalβ€”im
exp
ofReal
Real
Real.instZero
β€”ofReal_exp_ofReal_re
ofReal_im
exp_ofReal_re πŸ“–mathematicalβ€”re
exp
ofReal
Real.exp
β€”β€”
exp_sub πŸ“–mathematicalβ€”exp
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
β€”sub_eq_add_neg
exp_add
exp_neg
div_eq_mul_inv
exp_sum πŸ“–mathematicalβ€”exp
Finset.sum
Complex
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.prod
CommRing.toCommMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
exp_zero πŸ“–mathematicalβ€”exp
Complex
instZero
instOne
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
exp_def
CauSeq.lim_eq_of_equiv_const
not_le_of_gt
zero_lt_one
Nat.instZeroLEOneClass
Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
instCharZero
sub_self
norm_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Finset.sum_range_succ
pow_succ
MulZeroClass.mul_zero
zero_div
add_zero
isCauSeq_exp πŸ“–mathematicalβ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
β€”IsCauSeq.of_abv
Real.instIsStrictOrderedRing
isAbsoluteValueNorm
isCauSeq_norm_exp
isCauSeq_norm_exp πŸ“–mathematicalβ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
Finset.sum
Real.instAddCommMonoid
Finset.range
Norm.norm
Complex
instNorm
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
β€”Real.instIsStrictOrderedRing
exists_nat_gt
Real.instArchimedean
lt_of_le_of_lt
norm_nonneg
IsCauSeq.series_ratio_test
IsAbsoluteValue.abs_isAbsoluteValue
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
le_of_lt
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
one_mul
abs_norm
Nat.factorial_succ
pow_succ'
mul_comm
Nat.cast_mul
div_div
mul_div_assoc
mul_div_right_comm
norm_mul
norm_div
norm_natCast
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
div_le_divβ‚€
le_refl
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
le_trans
norm_exp_le_exp_norm πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
instNorm
exp
Real.exp
β€”sub_zero
norm_exp_sub_sum_le_exp_norm_sub_sum
norm_exp_ofReal πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
exp
ofReal
Real.exp
β€”ofReal_exp
norm_of_nonneg
le_of_lt
Real.exp_pos
norm_exp_sub_one_le πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
exp
instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_singleton
pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
instCharZero
exp_bound
pow_one
zero_add
mul_one
inv_one
mul_comm
mul_two
mul_add
Distrib.leftDistribClass
norm_exp_sub_one_sub_id_le πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
exp
instOne
Monoid.toNatPow
Real.instMonoid
β€”sub_eq_add_neg
add_assoc
Finset.sum_range_succ_comm
pow_one
zero_add
mul_one
Nat.cast_one
div_one
Finset.sum_singleton
pow_zero
div_self
NeZero.charZero_one
instCharZero
neg_add_rev
exp_bound
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_natSucc
Mathlib.Meta.NormNum.isNat_ofNat
Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
norm_exp_sub_sum_le_exp_norm_sub_sum πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
instNorm
instSub
exp
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
Real.instSub
Real.exp
Real.instAddCommMonoid
Real.instDivInvMonoid
Real.instMonoid
Real.instNatCast
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
CauSeq.lim_const
exp_def
sub_eq_add_neg
CauSeq.lim_neg
CauSeq.lim_add
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
lim_norm
CauSeq.lim_le
CauSeq.le_of_exists
Finset.sum_range_sub_sum_range
LE.le.trans_eq
IsAbsoluteValue.abv_sum
Real.instIsOrderedRing
norm_div
norm_pow
norm_natCast
sub_le_sub_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sum_le_exp_of_nonneg
norm_nonneg
norm_exp_sub_sum_le_norm_mul_exp πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
instNorm
instSub
exp
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
Real.instMul
Real.instMonoid
Real.exp
β€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
instIsComplete
CauSeq.lim_const
exp_def
sub_eq_add_neg
CauSeq.lim_neg
CauSeq.lim_add
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
lim_norm
CauSeq.lim_le
CauSeq.le_of_exists
Finset.sum_range_sub_sum_range
Finset.sum_congr
mul_div_assoc
pow_add
add_tsub_cancel_of_le
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.mem_range
Finset.mem_filter
IsAbsoluteValue.abv_sum
Real.instIsOrderedRing
norm_mul
norm_pow
norm_div
norm_natCast
Finset.sum_le_sum
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
norm_nonneg
le_refl
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
Nat.mono_cast
Nat.factorial_le
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Finset.mul_sum
Finset.sum_bij
tsub_lt_tsub_iff_right
tsub_add_cancel_of_le
add_tsub_cancel_right
Real.sum_le_exp_of_nonneg
ofReal_exp πŸ“–mathematicalβ€”ofReal
Real.exp
exp
β€”ofReal_exp_ofReal_re
ofReal_exp_ofReal_re πŸ“–mathematicalβ€”ofReal
re
exp
β€”conj_eq_iff_re
exp_conj
conj_ofReal
sum_div_factorial_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.filter
Finset.range
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
AddMonoidWithOne.toNatCast
Nat.factorial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_nbij'
Nat.instOrderedSub
tsub_add_cancel_of_le
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_div
Finset.sum_congr
Finset.sum_le_sum
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
inv_antiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_pos
Nat.cast_pos'
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
pow_pos
Nat.cast_pow
Nat.cast_mul
Nat.cast_le
add_comm
Nat.factorial_mul_pow_le_factorial
Nat.cast_add
Nat.cast_one
mul_inv_rev
mul_comm
inv_pow
pos_iff_ne_zero
ne_of_gt
add_sub_cancel_right
geom_sum_inv
eq_div_iff_mul_eq
mul_assoc
mul_inv_cancelβ‚€
one_mul
div_le_div_of_nonneg_right
sub_le_self
le_of_lt
inv_pos_of_pos

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalExp πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
exp πŸ“–CompOp
462 mathmath: Behrend.roth_lower_bound, HurwitzZeta.isBigO_atTop_evenKernel_sub, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', MeasureTheory.setIntegral_tilted, abs_exp_sub_one_le, Polynomial.mahlerMeasure_def_of_ne_zero, deriv_exp, map_exp_nhds, Continuous.rexp, sinh_eq, mellin_eq_fourier, Complex.isTheta_exp_arg_mul_im, ProbabilityTheory.gammaPDF_of_nonneg, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I, ProbabilityTheory.measure_sum_ge_le_of_HasCondSubgaussianMGF, HurwitzZeta.hasSum_int_cosKernelβ‚€, ProbabilityTheory.aemeasurable_exp_mul, exp_sub_sinh, Stirling.factorial_isEquivalent_stirling, norm_jacobiThetaβ‚‚_term_le, ProbabilityTheory.mgf_const_add, Complex.GammaIntegral_eq_mellin, rpow_eq_nhds_of_neg, integrableOn_exp_mul_Iic, ProbabilityTheory.HasSubgaussianMGF.integrable_exp_mul, UpperHalfPlane.im_div_exp_dist_le, integral_exp_mul_Iic, Complex.exp_re, exp_mul, tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero, isBoundedUnder_le_exp_comp, isBoundedUnder_ge_exp_comp, Function.Periodic.norm_qParam_le_of_one_half_le_im, MeasureTheory.exp_llr_of_ac', Behrend.roth_lower_bound_explicit, exp_lt_exp_of_lt, ProbabilityTheory.mgf_dirac, MeasureTheory.toReal_rnDeriv_tilted_left, tendsto_one_add_pow_exp_of_tendsto, log_exp, norm_exp_sub_one_sub_id_le, round_exp_one_eq_three, Complex.IsExpCmpFilter.isBigO_im_pow_re, exp_nsmul, norm_cexp_neg_mul_sq, rpow_def_of_pos, integral_exp, one_le_exp_iff, ProbabilityTheory.HasSubgaussianMGF.mgf_le, MeasureTheory.integral_tilted, exp_eq_exp, tendsto_exp_atTop, integrableOn_exp_Iic, ProbabilityTheory.cdf_expMeasure_eq, Function.Periodic.norm_qParam_lt_iff, mulExpNegSq_apply, one_sub_le_exp_neg, integral_exp_neg_mul_rpow, HurwitzKernelBounds.isBigO_atTop_F_int_one, Stirling.log_stirlingSeq_formula, AnalyticOn.rexp, exp_bound, ProbabilityTheory.mgf_le_of_mem_Icc_of_integral_eq_zero, tendsto_exp_div_pow_atTop, AnalyticAt.rexp, Complex.integral_rpow_mul_exp_neg_rpow, AnalyticOnNhd.rexp, rpow_inv_log, expPartialHomeomorph_apply, integral_rpow_mul_exp_neg_rpow, analyticAt_rexp, GammaIntegral_convergent, MeasureTheory.measure_lt_one_eq_integral_div_gamma, UpperHalfPlane.isometry_vertical_line, ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_add_compProd, exp_one_lt_three, comap_exp_nhds_zero, ProbabilityTheory.Kernel.HasSubgaussianMGF.memLp_exp_mul, Complex.hasDerivAt_GammaIntegral, isOpenEmbedding_exp, strictConvexOn_exp, HasFDerivWithinAt.exp, ProbabilityTheory.mgf_const, AEMeasurable.exp, analyticOnNhd_rexp, exp_sub_sum_range_succ_isLittleO_pow, isTheta_exp_comp_one, gronwallBound_of_K_ne_0, exp_list_sum, comap_exp_nhds_exp, tendsto_exp_neg_atTop_nhds_zero, UpperHalfPlane.im_le_im_mul_exp_dist, Complex.exp_ofReal_re, abs_exp_sub_one_sub_id_le, tsum_exp_neg_mul_int_sq, ContinuousWithinAt.rexp, MeasureTheory.integral_exp_tilted, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf', Complex.GammaIntegral_ofReal, Complex.norm_cpow_of_ne_zero, exp_arcosh, Complex.integral_exp_neg_rpow, ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv, exp_monotone, le_exp_log, log_lt_iff_lt_exp, ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior_integrableExpSet, tendsto_exp_comp_nhds_zero, Complex.partialGamma_add_one, coe_expOrderIso_apply, Complex.norm_cpow_of_imp, sigmoid_def, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf, Stirling.stirlingSeq_one, isBigO_one_exp_comp, HurwitzZeta.hasSum_int_cosKernel, AnalyticAt.rexp', isBigO_exp_comp_one, lt_log_iff_exp_lt, norm_jacobiThetaβ‚‚_term, LogDeriv_exp, exp_le_exp_of_le, exp_one_mul_le_exp, Behrend.lower_bound_le_one, sigmoid_mul_rexp_neg, le_log_iff_exp_le, ProbabilityTheory.integrable_pow_abs_mul_exp_of_mem_interior_integrableExpSet, ProbabilityTheory.HasCondSubgaussianMGF.ae_condExp_le, Stirling.le_factorial_stirling, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, tendsto_exp_nhds_zero_nhds_one, ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_mul, exp_one_gt_d9, integral_exp_Iic, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, exp_eq_one_iff, ProbabilityTheory.exponentialPDF_eq, HurwitzZeta.hasSum_nat_sinKernel, HasStrictDerivAt.exp, UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_left, differentiable_exp, norm_exp_mul_sq_le, isLittleO_exp_mul_rpow_of_lt, HurwitzKernelBounds.F_nat_one_le, Complex.norm_exp_sub_sum_le_norm_mul_exp, Filter.Tendsto.rexp, exp_one_rpow, isLittleO_pow_exp_atTop, two_mul_le_exp, exp_one_near_20, sum_le_exp_of_nonneg, HurwitzKernelBounds.isBigO_atTop_F_nat_one, tendsto_comp_exp_atTop, ProbabilityTheory.exponentialPDF_of_nonneg, integral_rpow_mul_exp_neg_mul_rpow, HasDerivAt.exp, rpow_def_of_neg, exp_bound_div_one_sub_of_interval, Behrend.bound, Behrend.four_zero_nine_six_lt_exp_sixteen, Finset.norm_prod_one_add_sub_one_le, ProbabilityTheory.HasSubgaussianMGF.measure_sum_ge_le_of_iIndepFun, exp_abs_le, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf', deriv_mulExpNegMulSq, norm_jacobiTheta_sub_one_le, isLittleO_rpow_exp_pos_mul_atTop, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_eq, ProbabilityTheory.HasSubgaussianMGF.memLp_exp_mul, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, ProbabilityTheory.lintegral_exp_mul_sq_norm_le_of_map_rotation_eq_self, exp_arsinh, ProbabilityTheory.tilted_mul_apply_mgf', ProbabilityTheory.mgf_fun_id_gaussianReal, exp_mul_le_cosh_add_mul_sinh, HurwitzZeta.hasSum_int_evenKernel, summable_exp_neg_nat, hasStrictDerivAt_const_rpow_of_neg, ModularFormClass.exp_decay_sub_atImInfty, EReal.exp_coe, MeasureTheory.tilted_apply_eq_ofReal_integral, exp_strictMono, ProbabilityTheory.gaussianPDFReal_def, tendsto_comp_exp_atBot, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty, Behrend.exp_neg_two_mul_le, isLittleO_exp_neg_mul_rpow_atTop, tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact, exp_sub_cosh, Complex.ofReal_exp, log_le_iff_le_exp, isBigO_at_im_infty_jacobiTheta_sub_one, HurwitzKernelBounds.isBigO_atTop_F_nat_zero_sub, ProbabilityTheory.Fernique.lintegral_closedBall_diff_exp_logRatio_mul_sq_le, exp_log_of_neg, ContDiff.exp, derivWithin_exp, range_exp, MeasureTheory.tilted_apply, Complex.integral_exp_neg_mul_rpow, Polynomial.hermite_eq_deriv_gaussian', fderiv_exp, ProbabilityTheory.Fernique.measure_gt_normThreshold_le_exp, HurwitzZeta.hasSum_int_sinKernel, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self', deriv_exp, exp_log, HurwitzZeta.isBigO_atTop_oddKernel, iter_deriv_exp, continuousOn_exp, log_div_self_antitoneOn, Polynomial.deriv_gaussian_eq_hermite_mul_gaussian, integrable_rpow_mul_exp_neg_mul_sq, integral_exp_neg_rpow, integrable_mul_exp_neg_mul_sq, HasFDerivAt.exp, ProbabilityTheory.mgf_add_const, tendsto_exp_comp_atTop, cosh_le_exp_half_sq, ProbabilityTheory.integrable_exp_mul_gaussianReal, rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg, ceil_exp_one_eq_three, UpperHalfPlane.le_dist_coe, log_div_sqrt_antitoneOn, mellin_eq_fourierIntegral, cosh_add_sinh, isLittleO_exp_comp_exp_comp, fderivWithin_exp, ProbabilityTheory.exp_neg_integrableOn_Ioc, isLittleO_rpow_exp_atTop, tendsto_exp_atBot, Polynomial.hermite_eq_deriv_gaussian, exp_half, isLittleO_zpow_exp_pos_mul_atTop, continuous_exp, intervalIntegral.intervalIntegrable_exp, ProbabilityTheory.hasDerivAt_neg_exp_mul_exp, summable_exp_nat_mul_of_ge, one_sub_lt_exp_neg, logDeriv_exp, Complex.norm_exp_ofReal, integrableOn_rpow_mul_exp_neg_rpow, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I', integrableOn_exp_mul_Ioi, ProbabilityTheory.integrable_of_mem_integrableExpSet, ProbabilityTheory.HasCondSubgaussianMGF.memLp_exp_mul, MeasureTheory.setLIntegral_tilted, ProbabilityTheory.integral_tilted_mul_eq_mgf, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, rpow_inv_log_le_exp_one, pow_div_factorial_le_exp, MeasureTheory.exp_neg_llr, integral_exp_neg_Ioi, ProbabilityTheory.HasSubgaussianMGF.measureReal_le_le_exp, MeasureTheory.exp_neg_llr', AnalyticWithinAt.rexp, sinh_sub_cosh, exp_multiset_sum, exp_le_exp, ProbabilityTheory.exponentialCDFReal_eq, Gamma_eq_integral, MeasureTheory.rnDeriv_tilted_left, hasDerivAt_mulExpNegMulSq, one_lt_exp_iff, map_exp_atBot, ProbabilityTheory.measure_sum_ge_le_of_hasCondSubgaussianMGF, numDerangements_tendsto_inv_e, ProbabilityTheory.mgf_const', Complex.IsExpCmpFilter.isLittleO_im_pow_exp_re, Differentiable.exp, integrableOn_exp_neg_Ioi, coe_comp_expOrderIso, isTheta_exp_comp_exp_comp, HurwitzZeta.hasSum_int_oddKernel, rpow_def_of_nonneg, exp_lt_one_iff, norm_jacobiThetaβ‚‚'_term_le, measurable_exp, one_sub_div_pow_le_exp_neg, NumberField.mixedEmbedding.fundamentalCone.expMap_apply, ProbabilityTheory.tilted_mul_apply_mgf, ContDiffWithinAt.exp, exp_neg_mul_rpow_isLittleO_exp_neg, MeasureTheory.setIntegral_tilted', UpperHalfPlane.exp_half_dist, exp_neg_mul_sq_isLittleO_exp_neg, integral_exp_mul_Ioi, HurwitzKernelBounds.F_nat_zero_zero_sub_le, exp_one_lt_d9, exp_injective, isLittleO_pow_exp_pos_mul_atTop, Complex.norm_exp, comap_exp_nhdsGT_zero, ContDiffOn.exp, quadratic_le_exp_of_nonneg, summable_pow_mul_exp_neg_nat_mul, ProbabilityTheory.gammaPDF_eq, isBigO_exp_comp_exp_comp, exp_lt_exp, ProbabilityTheory.HasSubgaussianMGF.measure_ge_le, ProbabilityTheory.rpow_abs_le_mul_max_exp, rexp_neg_quadratic_isLittleO_rpow_atTop, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply'', iteratedDeriv_exp_const_mul, integrableOn_Ioi_exp_neg_mul_sq_iff, differentiableAt_exp, convexOn_exp, ProbabilityTheory.HasSubgaussianMGF.measure_sum_range_ge_le_of_iIndepFun, one_le_exp, ProbabilityTheory.rpow_abs_le_mul_exp_abs, tendsto_one_add_rpow_exp_of_tendsto, MeasureTheory.lintegral_tilted, tendsto_mul_exp_add_div_pow_atTop, tendsto_div_pow_mul_exp_add_atTop, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf, ProbabilityTheory.mgf_dirac', exp_nonneg, exp_artanh, integral_gaussian, Function.Periodic.norm_qParam, comap_exp_atTop, hasDerivAt_exp, CuspFormClass.exp_decay_atImInfty', ProbabilityTheory.rpow_abs_le_mul_max_exp_of_pos, Complex.integral_rpow_mul_exp_neg_mul_rpow, expMonoidHom_apply, analyticWithinAt_rexp, HurwitzKernelBounds.isBigO_exp_neg_mul_of_le, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty', rpow_eq_nhds_of_pos, Behrend.le_sqrt_log, Behrend.two_div_one_sub_two_div_e_le_eight, ProbabilityTheory.mgf_gaussianReal, add_one_lt_exp, Complex.IsExpCmpFilter.abs_im_pow_eventuallyLE_exp_re, cosh_sub_sinh, ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_ge_le, tanh_eq, ProbabilityTheory.mgf_id_gaussianReal, ProbabilityTheory.integrable_exp_mul_of_le, exp_bound', integral_rpow_mul_exp_neg_mul_Ioi, sinh_add_cosh, ProbabilityTheory.Fernique.lintegral_exp_mul_sq_norm_le_mul, log_comp_exp, MeasureTheory.exp_llr_of_ac, tendsto_exp_div_rpow_atTop, exp_zero, Gamma_integrand_isLittleO, Complex.norm_exp_le_exp_norm, Behrend.lower_bound_le_one', HurwitzKernelBounds.F_nat_zero_le, UpperHalfPlane.dist_coe_le, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.mixedEmbedding.fundamentalCone.expMap_single_apply, exp_neg_one_gt_d9, exp_neg_integrableOn_Ioi, Complex.norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, exp_one_near_10, exp_le_one_iff, summable_pow_mul_jacobiThetaβ‚‚_term_bound, integrable_exp_neg_mul_sq_iff, MeasureTheory.setLIntegral_tilted', ProbabilityTheory.integrable_pow_mul_exp_of_mem_interior_integrableExpSet, dist_le_of_trajectories_ODE, Complex.norm_exp_sub_sum_le_exp_norm_sub_sum, exp_one_pow, exp_approx_end, integrableOn_rpow_mul_exp_neg_mul_sq, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, DifferentiableOn.exp, rpow_def_of_nonpos, exp_sub, floor_exp_one_eq_two, integral_exp_neg_Ioi_zero, abs_rpow_le_exp_log_mul, ruzsaSzemerediNumberNat_lower_bound, exp_approx_end', MeasureTheory.tilted_eq_withDensity_nnreal, Measurable.exp, DifferentiableAt.exp, exp_eq_exp_ℝ, integral_gaussian_Ioi, cosh_eq, integrable_exp_neg_mul_sq, GaussianFourier.verticalIntegral_norm_le, le_inv_mul_exp, ProbabilityTheory.IndepFun.exp_mul, CuspFormClass.exp_decay_atImInfty, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self_of_isProbabilityMeasure, contDiff_exp, exp_bound_div_one_sub_of_interval', HasSum.rexp, ProbabilityTheory.integrable_exp_mul_of_mem_Icc, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self, Complex.norm_cpow_le, Polynomial.tendsto_div_exp_atTop, HurwitzZeta.isBigO_atTop_cosKernel_sub, ContinuousOn.rexp, add_one_le_exp, ruzsaSzemerediNumberNat_asymptotic_lower_bound, hasStrictFDerivAt_rpow_of_neg, exp_one_gt_two, ProbabilityTheory.HasCondSubgaussianMGF.integrable_exp_mul, Complex.GammaIntegral_convergent, rexp_tsum_eq_tprod, map_exp_atTop, integral_exp_Iic_zero, MeasureTheory.tilted_apply_eq_ofReal_integral', UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_right, HasDerivWithinAt.exp, exp_neg, MeasureTheory.rnDeriv_tilted_left_self, MeasureTheory.measure_unitBall_eq_integral_div_gamma, exp_neg_one_lt_half, log_div_self_rpow_antitoneOn, HurwitzZeta.hasSum_nat_cosKernelβ‚€, DifferentiableWithinAt.exp, hasProd_of_hasSum_log, ContDiffAt.exp, exp_sum, ContinuousAt.rexp, CFC.real_exp_eq_normedSpace_exp, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_integrable_exp_mul, MeasureTheory.exp_llr, ProbabilityTheory.HasCondSubgaussianMGF.ae_trim_condExp_le, exp_sub_sum_range_isBigO_pow, analyticOn_rexp, exp_log_eq_abs, exp_nat_mul, exp_add, Complex.IsExpCmpFilter.isTheta_cpow_exp_re_mul_log, tendsto_one_add_div_rpow_exp, ModularFormClass.exp_decay_sub_atImInfty', tendsto_exp_mul_div_rpow_atTop, tendsto_exp_atBot_nhdsGT, hasStrictDerivAt_exp, dist_le_of_trajectories_ODE_of_mem, summable_exp_nat_mul_iff, Complex.exp_im, mul_exp_neg_le_exp_neg_one, ProbabilityTheory.mgf_pos_iff, HasStrictFDerivAt.exp, exp_neg_one_lt_d9, isLittleO_one_exp_comp, HurwitzZeta.isBigO_atTop_sinKernel, Behrend.exp_four_lt, MeasureTheory.tilted_apply', Function.Periodic.exp_decay_sub_of_bounded_at_inf, HurwitzKernelBounds.isBigO_atTop_F_int_zero_sub, tendsto_one_add_div_pow_exp, tendsto_pow_mul_exp_neg_atTop_nhds_zero, exp_pos, Function.Periodic.exp_decay_of_zero_at_inf, gronwallBound_Ξ΅0, GaussianFourier.integral_rexp_neg_mul_sq_norm, HurwitzZeta.hasSum_int_evenKernelβ‚€, integrableOn_rpow_mul_exp_neg_mul_rpow, ProbabilityTheory.IsGaussian.exists_integrable_exp_sq, abs_exp, rpow_mul_exp_neg_mul_rpow_isLittleO_exp_neg, ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
expMonoidHom πŸ“–CompOp
1 mathmath: expMonoidHom_apply
expNear πŸ“–CompOp
5 mathmath: expNear_succ, expNear_zero, expNear_sub, exp_approx_end, exp_approx_end'
termRexp πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abs_exp πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
exp
β€”abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exp_pos
abs_exp_sub_one_le πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.cast_one
Complex.norm_real
Nat.instAtLeastTwoHAddOfNat
Complex.norm_exp_sub_one_le
abs_exp_sub_one_sub_id_le πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
exp
Monoid.toNatPow
instMonoid
β€”sq_abs
Nat.cast_one
Complex.norm_real
Complex.norm_exp_sub_one_sub_id_le
add_one_le_exp πŸ“–mathematicalβ€”Real
instLE
instAdd
instOne
exp
β€”eq_or_ne
zero_add
exp_zero
LT.lt.le
add_one_lt_exp
add_one_lt_exp πŸ“–mathematicalβ€”Real
instLT
instAdd
instOne
exp
β€”Ne.lt_or_gt
le_or_gt
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
exp_pos
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
exp_neg
sub_neg_eq_add
add_comm
one_div
inv_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
exp_bound_div_one_sub_of_interval'
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
expMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
Real
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
instAddMonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
semiring
MonoidHom.instFunLike
expMonoidHom
exp
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
expNear_sub πŸ“–mathematicalβ€”Real
instSub
expNear
instMul
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
β€”add_sub_add_left_eq_sub
mul_sub
expNear_succ πŸ“–mathematicalβ€”expNear
Real
instAdd
instOne
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instNatCast
β€”Finset.sum_congr
Finset.range_add_one
div_eq_mul_inv
Finset.sum_insert
pow_succ
Nat.cast_mul
Nat.cast_add
Nat.cast_one
mul_inv_rev
add_assoc
mul_add
Distrib.leftDistribClass
mul_one
add_left_comm
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddSemigroup.to_isAssociative
AddCommMagma.to_isCommutative
Semigroup.to_isAssociative
CommMagma.to_isCommutative
expNear_zero πŸ“–mathematicalβ€”expNearβ€”pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
one_mul
zero_add
exp_1_approx_succ_eq πŸ“–β€”Real
instNatCast
instLE
abs
lattice
instAddGroup
instSub
exp
instOne
expNear
instMul
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
Nat.factorial
β€”β€”exp_approx_succ
one_div
abs_one
instIsOrderedRing
Mathlib.Tactic.FieldSimp.le_eq_cancel_le
PosMulStrictMono.toPosMulMono
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Nat.cast_zero
IsStrictOrderedRing.toCharZero
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
mul_one
zero_lt_one
instZeroLEOneClass
NeZero.one
GroupWithZero.toNontrivial
add_sub_cancel
sub_self
abs_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
MulZeroClass.mul_zero
exp_abs_le πŸ“–mathematicalβ€”Real
instLE
exp
abs
lattice
instAddGroup
instAdd
instNeg
β€”le_total
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
abs_of_nonneg
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
exp_add πŸ“–mathematicalβ€”exp
Real
instAdd
instMul
β€”Complex.ofReal_add
Complex.exp_add
Complex.exp_ofReal_im
MulZeroClass.mul_zero
sub_zero
exp_approx_end πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
exp
expNear
instZero
instMul
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
instAdd
β€”MulZeroClass.mul_zero
add_zero
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Nat.cast_nonneg'
instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_pos'
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Nat.factorial_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
exp_bound
exp_approx_end' πŸ“–mathematicalReal
instNatCast
instLE
abs
lattice
instAddGroup
instOne
instSub
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
exp
expNear
Monoid.toNatPow
instMonoid
Nat.factorial
β€”exp_approx_succ
MulZeroClass.mul_zero
add_zero
exp_approx_end
exp_approx_start πŸ“–β€”Real
instLE
abs
lattice
instAddGroup
instSub
exp
expNear
instMul
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
β€”β€”expNear_zero
pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
one_mul
exp_approx_succ πŸ“–β€”Real
instLE
abs
lattice
instAddGroup
instSub
instAdd
instOne
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instNatCast
exp
expNear
Monoid.toNatPow
instMonoid
Nat.factorial
β€”β€”le_imp_le_of_le_of_le
abs_sub_le
instIsOrderedAddMonoid
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
expNear_succ
expNear_sub
abs_mul
instIsOrderedRing
pow_succ'
Nat.cast_mul
Nat.cast_add
Nat.cast_one
div_eq_mul_inv
mul_inv_rev
abs_pow
abs_inv
instIsStrictOrderedRing
Nat.abs_cast
mul_add
Distrib.leftDistribClass
AddRightCancelSemigroup.toIsRightCancelAdd
AddSemigroup.to_isAssociative
AddCommMagma.to_isCommutative
Semigroup.to_isAssociative
CommMagma.to_isCommutative
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_sub_iff_add_le'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instZeroLEOneClass
exp_bound πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
exp
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
instMul
β€”Nat.cast_one
Complex.norm_real
Finset.sum_congr
Complex.exp_bound
exp_bound' πŸ“–mathematicalReal
instLE
instZero
instOne
exp
instAdd
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
instMul
β€”instIsOrderedAddMonoid
exp_bound
abs_sub_le_iff
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
mul_div_assoc
Nat.cast_add
Nat.cast_one
exp_bound_div_one_sub_of_interval πŸ“–mathematicalReal
instLE
instZero
instLT
instOne
exp
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”eq_or_lt_of_le
exp_zero
sub_zero
div_self
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
LT.lt.le
exp_bound_div_one_sub_of_interval'
exp_bound_div_one_sub_of_interval' πŸ“–mathematicalReal
instLT
instZero
instOne
exp
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”pow_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Nat.instAtLeastTwoHAddOfNat
exp_bound'
LT.lt.le
zero_lt_three
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.sum_range_succ
Mathlib.Meta.NormNum.instAtLeastTwo
pow_zero
div_self
Mathlib.Meta.NormNum.isNat_eq_false
IsStrictOrderedRing.toCharZero
Nat.cast_zero
zero_add
pow_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNat.raw_refl
mul_one
div_one
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_mul
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
CancelDenoms.div_subst
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.mul_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
sq_nonneg
IsOrderedRing.toPosMulMono
le_of_lt
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_of_not_ge
exp_eq_exp πŸ“–mathematicalβ€”expβ€”exp_injective
exp_eq_one_iff πŸ“–mathematicalβ€”exp
Real
instOne
instZero
β€”exp_injective
exp_zero
exp_injective πŸ“–mathematicalβ€”Real
exp
β€”StrictMono.injective
exp_strictMono
exp_le_exp πŸ“–mathematicalβ€”Real
instLE
exp
β€”StrictMono.le_iff_le
exp_strictMono
exp_le_exp_of_le πŸ“–mathematicalReal
instLE
expβ€”exp_monotone
exp_le_one_iff πŸ“–mathematicalβ€”Real
instLE
exp
instOne
instZero
β€”exp_le_exp
exp_zero
exp_list_sum πŸ“–mathematicalβ€”exp
Real
instAdd
instZero
instMul
instOne
β€”map_list_prod
MonoidHom.instMonoidHomClass
exp_lt_exp πŸ“–mathematicalβ€”Real
instLT
exp
β€”StrictMono.lt_iff_lt
exp_strictMono
exp_lt_exp_of_lt πŸ“–mathematicalReal
instLT
expβ€”exp_strictMono
exp_lt_one_iff πŸ“–mathematicalβ€”Real
instLT
exp
instOne
instZero
β€”exp_zero
exp_lt_exp
exp_monotone πŸ“–mathematicalβ€”Monotone
Real
instPreorder
exp
β€”StrictMono.monotone
exp_strictMono
exp_multiset_sum πŸ“–mathematicalβ€”exp
Multiset.sum
Real
instAddCommMonoid
Multiset.prod
instCommMonoid
Multiset.map
β€”MonoidHom.map_multiset_prod
exp_nat_mul πŸ“–mathematicalβ€”exp
Real
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”Complex.ofReal_injective
Complex.ofReal_exp
Complex.ofReal_mul
Complex.exp_nat_mul
Complex.ofReal_pow
exp_ne_zero πŸ“–β€”β€”β€”β€”Complex.exp_ne_zero
Complex.ofReal_exp_ofReal_re
exp.eq_1
exp_neg πŸ“–mathematicalβ€”exp
Real
instNeg
instInv
β€”Complex.ofReal_injective
Complex.ofReal_exp
Complex.ofReal_neg
Complex.exp_neg
Complex.ofReal_inv
exp_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
exp
β€”LT.lt.le
exp_pos
exp_nsmul πŸ“–mathematicalβ€”exp
Real
AddMonoid.toNatSMul
instAddMonoid
Monoid.toNatPow
instMonoid
β€”MonoidHom.map_pow
exp_pos πŸ“–mathematicalβ€”Real
instLT
instZero
exp
β€”le_total
lt_of_lt_of_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
one_le_exp
neg_neg
exp_neg
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exp_strictMono πŸ“–mathematicalβ€”StrictMono
Real
instPreorder
exp
β€”sub_add_cancel
exp_add
lt_mul_iff_one_lt_left
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
exp_pos
lt_of_lt_of_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
exp_sub πŸ“–mathematicalβ€”exp
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
β€”sub_eq_add_neg
exp_add
exp_neg
div_eq_mul_inv
exp_sum πŸ“–mathematicalβ€”exp
Finset.sum
Real
instAddCommMonoid
Finset.prod
instCommMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
exp_zero πŸ“–mathematicalβ€”exp
Real
instZero
instOne
β€”Complex.exp_zero
le_inv_mul_exp πŸ“–mathematicalReal
instLT
instZero
instLE
instMul
instInv
exp
β€”le_inv_mul_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
zero_le_one
instZeroLEOneClass
add_one_le_exp
norm_exp_sub_one_sub_id_le πŸ“–mathematicalReal
instLE
Norm.norm
norm
instOne
instSub
exp
Monoid.toNatPow
instMonoid
β€”Complex.norm_real
Nat.cast_one
Complex.ofReal_exp
Complex.norm_exp_sub_one_sub_id_le
sq_abs
one_le_exp πŸ“–mathematicalReal
instLE
instZero
instOne
exp
β€”le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
one_le_exp_iff πŸ“–mathematicalβ€”Real
instLE
instOne
exp
instZero
β€”exp_le_exp
exp_zero
one_lt_exp_iff πŸ“–mathematicalβ€”Real
instLT
instOne
exp
instZero
β€”exp_zero
exp_lt_exp
one_sub_div_pow_le_exp_neg πŸ“–mathematicalReal
instLE
instNatCast
Monoid.toNatPow
instMonoid
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
exp
instNeg
β€”eq_or_ne
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
div_zero
sub_zero
pow_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Nat.cast_zero
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedRing.toMulPosMono
sub_nonneg
covariant_swap_add_of_covariant_add
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instZeroLEOneClass
Nat.cast_nonneg
one_sub_le_exp_neg
exp_nat_mul
mul_neg
mul_comm
div_mul_cancelβ‚€
ne_of_gt
Nat.cast_pos'
NeZero.charZero_one
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
one_sub_le_exp_neg πŸ“–mathematicalβ€”Real
instLE
instSub
instOne
exp
instNeg
β€”Eq.trans_le
sub_eq_neg_add
add_one_le_exp
one_sub_lt_exp_neg πŸ“–mathematicalβ€”Real
instLT
instSub
instOne
exp
instNeg
β€”Eq.trans_lt
sub_eq_neg_add
add_one_lt_exp
neg_ne_zero
pow_div_factorial_le_exp πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
exp
β€”Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
IsOrderedRing.toPosMulMono
Nat.cast_pos'
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
Finset.self_mem_range_succ
sum_le_exp_of_nonneg
quadratic_le_exp_of_nonneg πŸ“–mathematicalReal
instLE
instZero
instAdd
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
exp
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_range_succ
Finset.sum_singleton
pow_zero
Nat.cast_succ
pow_one
mul_one
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.nnrat_rawCast
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isNat_add
sum_le_exp_of_nonneg
sum_le_exp_of_nonneg πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
exp
β€”instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
instIsCompleteAbs
Complex.isCauSeq_re
CauSeq.le_lim
CauSeq.le_of_exists
Complex.re_sum
Finset.sum_congr
Finset.sum_le_sum_of_subset_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.range_mono
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
IsOrderedRing.toPosMulMono
Nat.cast_pos'
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.factorial_pos
exp.eq_1
Complex.isAbsoluteValueNorm
Complex.instIsComplete
Complex.exp_def
Complex.cauSeqRe.eq_1
Complex.lim_re

---

← Back to Index