exp π | CompOp | 462 mathmath: Behrend.roth_lower_bound, HurwitzZeta.isBigO_atTop_evenKernel_sub, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', MeasureTheory.setIntegral_tilted, abs_exp_sub_one_le, Polynomial.mahlerMeasure_def_of_ne_zero, deriv_exp, map_exp_nhds, Continuous.rexp, sinh_eq, mellin_eq_fourier, Complex.isTheta_exp_arg_mul_im, ProbabilityTheory.gammaPDF_of_nonneg, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I, ProbabilityTheory.measure_sum_ge_le_of_HasCondSubgaussianMGF, HurwitzZeta.hasSum_int_cosKernelβ, ProbabilityTheory.aemeasurable_exp_mul, exp_sub_sinh, Stirling.factorial_isEquivalent_stirling, norm_jacobiThetaβ_term_le, ProbabilityTheory.mgf_const_add, Complex.GammaIntegral_eq_mellin, rpow_eq_nhds_of_neg, integrableOn_exp_mul_Iic, ProbabilityTheory.HasSubgaussianMGF.integrable_exp_mul, UpperHalfPlane.im_div_exp_dist_le, integral_exp_mul_Iic, Complex.exp_re, exp_mul, tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero, isBoundedUnder_le_exp_comp, isBoundedUnder_ge_exp_comp, Function.Periodic.norm_qParam_le_of_one_half_le_im, MeasureTheory.exp_llr_of_ac', Behrend.roth_lower_bound_explicit, exp_lt_exp_of_lt, ProbabilityTheory.mgf_dirac, MeasureTheory.toReal_rnDeriv_tilted_left, tendsto_one_add_pow_exp_of_tendsto, log_exp, norm_exp_sub_one_sub_id_le, round_exp_one_eq_three, Complex.IsExpCmpFilter.isBigO_im_pow_re, exp_nsmul, norm_cexp_neg_mul_sq, rpow_def_of_pos, integral_exp, one_le_exp_iff, ProbabilityTheory.HasSubgaussianMGF.mgf_le, MeasureTheory.integral_tilted, exp_eq_exp, tendsto_exp_atTop, integrableOn_exp_Iic, ProbabilityTheory.cdf_expMeasure_eq, Function.Periodic.norm_qParam_lt_iff, mulExpNegSq_apply, one_sub_le_exp_neg, integral_exp_neg_mul_rpow, HurwitzKernelBounds.isBigO_atTop_F_int_one, Stirling.log_stirlingSeq_formula, AnalyticOn.rexp, exp_bound, ProbabilityTheory.mgf_le_of_mem_Icc_of_integral_eq_zero, tendsto_exp_div_pow_atTop, AnalyticAt.rexp, Complex.integral_rpow_mul_exp_neg_rpow, AnalyticOnNhd.rexp, rpow_inv_log, expPartialHomeomorph_apply, integral_rpow_mul_exp_neg_rpow, analyticAt_rexp, GammaIntegral_convergent, MeasureTheory.measure_lt_one_eq_integral_div_gamma, UpperHalfPlane.isometry_vertical_line, ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_add_compProd, exp_one_lt_three, comap_exp_nhds_zero, ProbabilityTheory.Kernel.HasSubgaussianMGF.memLp_exp_mul, Complex.hasDerivAt_GammaIntegral, isOpenEmbedding_exp, strictConvexOn_exp, HasFDerivWithinAt.exp, ProbabilityTheory.mgf_const, AEMeasurable.exp, analyticOnNhd_rexp, exp_sub_sum_range_succ_isLittleO_pow, isTheta_exp_comp_one, gronwallBound_of_K_ne_0, exp_list_sum, comap_exp_nhds_exp, tendsto_exp_neg_atTop_nhds_zero, UpperHalfPlane.im_le_im_mul_exp_dist, Complex.exp_ofReal_re, abs_exp_sub_one_sub_id_le, tsum_exp_neg_mul_int_sq, ContinuousWithinAt.rexp, MeasureTheory.integral_exp_tilted, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf', Complex.GammaIntegral_ofReal, Complex.norm_cpow_of_ne_zero, exp_arcosh, Complex.integral_exp_neg_rpow, ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv, exp_monotone, le_exp_log, log_lt_iff_lt_exp, ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior_integrableExpSet, tendsto_exp_comp_nhds_zero, Complex.partialGamma_add_one, coe_expOrderIso_apply, Complex.norm_cpow_of_imp, sigmoid_def, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf, Stirling.stirlingSeq_one, isBigO_one_exp_comp, HurwitzZeta.hasSum_int_cosKernel, AnalyticAt.rexp', isBigO_exp_comp_one, lt_log_iff_exp_lt, norm_jacobiThetaβ_term, LogDeriv_exp, exp_le_exp_of_le, exp_one_mul_le_exp, Behrend.lower_bound_le_one, sigmoid_mul_rexp_neg, le_log_iff_exp_le, ProbabilityTheory.integrable_pow_abs_mul_exp_of_mem_interior_integrableExpSet, ProbabilityTheory.HasCondSubgaussianMGF.ae_condExp_le, Stirling.le_factorial_stirling, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, tendsto_exp_nhds_zero_nhds_one, ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_mul, exp_one_gt_d9, integral_exp_Iic, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, exp_eq_one_iff, ProbabilityTheory.exponentialPDF_eq, HurwitzZeta.hasSum_nat_sinKernel, HasStrictDerivAt.exp, UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_left, differentiable_exp, norm_exp_mul_sq_le, isLittleO_exp_mul_rpow_of_lt, HurwitzKernelBounds.F_nat_one_le, Complex.norm_exp_sub_sum_le_norm_mul_exp, Filter.Tendsto.rexp, exp_one_rpow, isLittleO_pow_exp_atTop, two_mul_le_exp, exp_one_near_20, sum_le_exp_of_nonneg, HurwitzKernelBounds.isBigO_atTop_F_nat_one, tendsto_comp_exp_atTop, ProbabilityTheory.exponentialPDF_of_nonneg, integral_rpow_mul_exp_neg_mul_rpow, HasDerivAt.exp, rpow_def_of_neg, exp_bound_div_one_sub_of_interval, Behrend.bound, Behrend.four_zero_nine_six_lt_exp_sixteen, Finset.norm_prod_one_add_sub_one_le, ProbabilityTheory.HasSubgaussianMGF.measure_sum_ge_le_of_iIndepFun, exp_abs_le, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf', deriv_mulExpNegMulSq, norm_jacobiTheta_sub_one_le, isLittleO_rpow_exp_pos_mul_atTop, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_eq, ProbabilityTheory.HasSubgaussianMGF.memLp_exp_mul, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, ProbabilityTheory.lintegral_exp_mul_sq_norm_le_of_map_rotation_eq_self, exp_arsinh, ProbabilityTheory.tilted_mul_apply_mgf', ProbabilityTheory.mgf_fun_id_gaussianReal, exp_mul_le_cosh_add_mul_sinh, HurwitzZeta.hasSum_int_evenKernel, summable_exp_neg_nat, hasStrictDerivAt_const_rpow_of_neg, ModularFormClass.exp_decay_sub_atImInfty, EReal.exp_coe, MeasureTheory.tilted_apply_eq_ofReal_integral, exp_strictMono, ProbabilityTheory.gaussianPDFReal_def, tendsto_comp_exp_atBot, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty, Behrend.exp_neg_two_mul_le, isLittleO_exp_neg_mul_rpow_atTop, tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact, exp_sub_cosh, Complex.ofReal_exp, log_le_iff_le_exp, isBigO_at_im_infty_jacobiTheta_sub_one, HurwitzKernelBounds.isBigO_atTop_F_nat_zero_sub, ProbabilityTheory.Fernique.lintegral_closedBall_diff_exp_logRatio_mul_sq_le, exp_log_of_neg, ContDiff.exp, derivWithin_exp, range_exp, MeasureTheory.tilted_apply, Complex.integral_exp_neg_mul_rpow, Polynomial.hermite_eq_deriv_gaussian', fderiv_exp, ProbabilityTheory.Fernique.measure_gt_normThreshold_le_exp, HurwitzZeta.hasSum_int_sinKernel, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self', deriv_exp, exp_log, HurwitzZeta.isBigO_atTop_oddKernel, iter_deriv_exp, continuousOn_exp, log_div_self_antitoneOn, Polynomial.deriv_gaussian_eq_hermite_mul_gaussian, integrable_rpow_mul_exp_neg_mul_sq, integral_exp_neg_rpow, integrable_mul_exp_neg_mul_sq, HasFDerivAt.exp, ProbabilityTheory.mgf_add_const, tendsto_exp_comp_atTop, cosh_le_exp_half_sq, ProbabilityTheory.integrable_exp_mul_gaussianReal, rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg, ceil_exp_one_eq_three, UpperHalfPlane.le_dist_coe, log_div_sqrt_antitoneOn, mellin_eq_fourierIntegral, cosh_add_sinh, isLittleO_exp_comp_exp_comp, fderivWithin_exp, ProbabilityTheory.exp_neg_integrableOn_Ioc, isLittleO_rpow_exp_atTop, tendsto_exp_atBot, Polynomial.hermite_eq_deriv_gaussian, exp_half, isLittleO_zpow_exp_pos_mul_atTop, continuous_exp, intervalIntegral.intervalIntegrable_exp, ProbabilityTheory.hasDerivAt_neg_exp_mul_exp, summable_exp_nat_mul_of_ge, one_sub_lt_exp_neg, logDeriv_exp, Complex.norm_exp_ofReal, integrableOn_rpow_mul_exp_neg_rpow, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I', integrableOn_exp_mul_Ioi, ProbabilityTheory.integrable_of_mem_integrableExpSet, ProbabilityTheory.HasCondSubgaussianMGF.memLp_exp_mul, MeasureTheory.setLIntegral_tilted, ProbabilityTheory.integral_tilted_mul_eq_mgf, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, rpow_inv_log_le_exp_one, pow_div_factorial_le_exp, MeasureTheory.exp_neg_llr, integral_exp_neg_Ioi, ProbabilityTheory.HasSubgaussianMGF.measureReal_le_le_exp, MeasureTheory.exp_neg_llr', AnalyticWithinAt.rexp, sinh_sub_cosh, exp_multiset_sum, exp_le_exp, ProbabilityTheory.exponentialCDFReal_eq, Gamma_eq_integral, MeasureTheory.rnDeriv_tilted_left, hasDerivAt_mulExpNegMulSq, one_lt_exp_iff, map_exp_atBot, ProbabilityTheory.measure_sum_ge_le_of_hasCondSubgaussianMGF, numDerangements_tendsto_inv_e, ProbabilityTheory.mgf_const', Complex.IsExpCmpFilter.isLittleO_im_pow_exp_re, Differentiable.exp, integrableOn_exp_neg_Ioi, coe_comp_expOrderIso, isTheta_exp_comp_exp_comp, HurwitzZeta.hasSum_int_oddKernel, rpow_def_of_nonneg, exp_lt_one_iff, norm_jacobiThetaβ'_term_le, measurable_exp, one_sub_div_pow_le_exp_neg, NumberField.mixedEmbedding.fundamentalCone.expMap_apply, ProbabilityTheory.tilted_mul_apply_mgf, ContDiffWithinAt.exp, exp_neg_mul_rpow_isLittleO_exp_neg, MeasureTheory.setIntegral_tilted', UpperHalfPlane.exp_half_dist, exp_neg_mul_sq_isLittleO_exp_neg, integral_exp_mul_Ioi, HurwitzKernelBounds.F_nat_zero_zero_sub_le, exp_one_lt_d9, exp_injective, isLittleO_pow_exp_pos_mul_atTop, Complex.norm_exp, comap_exp_nhdsGT_zero, ContDiffOn.exp, quadratic_le_exp_of_nonneg, summable_pow_mul_exp_neg_nat_mul, ProbabilityTheory.gammaPDF_eq, isBigO_exp_comp_exp_comp, exp_lt_exp, ProbabilityTheory.HasSubgaussianMGF.measure_ge_le, ProbabilityTheory.rpow_abs_le_mul_max_exp, rexp_neg_quadratic_isLittleO_rpow_atTop, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply'', iteratedDeriv_exp_const_mul, integrableOn_Ioi_exp_neg_mul_sq_iff, differentiableAt_exp, convexOn_exp, ProbabilityTheory.HasSubgaussianMGF.measure_sum_range_ge_le_of_iIndepFun, one_le_exp, ProbabilityTheory.rpow_abs_le_mul_exp_abs, tendsto_one_add_rpow_exp_of_tendsto, MeasureTheory.lintegral_tilted, tendsto_mul_exp_add_div_pow_atTop, tendsto_div_pow_mul_exp_add_atTop, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf, ProbabilityTheory.mgf_dirac', exp_nonneg, exp_artanh, integral_gaussian, Function.Periodic.norm_qParam, comap_exp_atTop, hasDerivAt_exp, CuspFormClass.exp_decay_atImInfty', ProbabilityTheory.rpow_abs_le_mul_max_exp_of_pos, Complex.integral_rpow_mul_exp_neg_mul_rpow, expMonoidHom_apply, analyticWithinAt_rexp, HurwitzKernelBounds.isBigO_exp_neg_mul_of_le, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty', rpow_eq_nhds_of_pos, Behrend.le_sqrt_log, Behrend.two_div_one_sub_two_div_e_le_eight, ProbabilityTheory.mgf_gaussianReal, add_one_lt_exp, Complex.IsExpCmpFilter.abs_im_pow_eventuallyLE_exp_re, cosh_sub_sinh, ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_ge_le, tanh_eq, ProbabilityTheory.mgf_id_gaussianReal, ProbabilityTheory.integrable_exp_mul_of_le, exp_bound', integral_rpow_mul_exp_neg_mul_Ioi, sinh_add_cosh, ProbabilityTheory.Fernique.lintegral_exp_mul_sq_norm_le_mul, log_comp_exp, MeasureTheory.exp_llr_of_ac, tendsto_exp_div_rpow_atTop, exp_zero, Gamma_integrand_isLittleO, Complex.norm_exp_le_exp_norm, Behrend.lower_bound_le_one', HurwitzKernelBounds.F_nat_zero_le, UpperHalfPlane.dist_coe_le, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.mixedEmbedding.fundamentalCone.expMap_single_apply, exp_neg_one_gt_d9, exp_neg_integrableOn_Ioi, Complex.norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, exp_one_near_10, exp_le_one_iff, summable_pow_mul_jacobiThetaβ_term_bound, integrable_exp_neg_mul_sq_iff, MeasureTheory.setLIntegral_tilted', ProbabilityTheory.integrable_pow_mul_exp_of_mem_interior_integrableExpSet, dist_le_of_trajectories_ODE, Complex.norm_exp_sub_sum_le_exp_norm_sub_sum, exp_one_pow, exp_approx_end, integrableOn_rpow_mul_exp_neg_mul_sq, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, DifferentiableOn.exp, rpow_def_of_nonpos, exp_sub, floor_exp_one_eq_two, integral_exp_neg_Ioi_zero, abs_rpow_le_exp_log_mul, ruzsaSzemerediNumberNat_lower_bound, exp_approx_end', MeasureTheory.tilted_eq_withDensity_nnreal, Measurable.exp, DifferentiableAt.exp, exp_eq_exp_β, integral_gaussian_Ioi, cosh_eq, integrable_exp_neg_mul_sq, GaussianFourier.verticalIntegral_norm_le, le_inv_mul_exp, ProbabilityTheory.IndepFun.exp_mul, CuspFormClass.exp_decay_atImInfty, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self_of_isProbabilityMeasure, contDiff_exp, exp_bound_div_one_sub_of_interval', HasSum.rexp, ProbabilityTheory.integrable_exp_mul_of_mem_Icc, ProbabilityTheory.exists_integrable_exp_sq_of_map_rotation_eq_self, Complex.norm_cpow_le, Polynomial.tendsto_div_exp_atTop, HurwitzZeta.isBigO_atTop_cosKernel_sub, ContinuousOn.rexp, add_one_le_exp, ruzsaSzemerediNumberNat_asymptotic_lower_bound, hasStrictFDerivAt_rpow_of_neg, exp_one_gt_two, ProbabilityTheory.HasCondSubgaussianMGF.integrable_exp_mul, Complex.GammaIntegral_convergent, rexp_tsum_eq_tprod, map_exp_atTop, integral_exp_Iic_zero, MeasureTheory.tilted_apply_eq_ofReal_integral', UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_right, HasDerivWithinAt.exp, exp_neg, MeasureTheory.rnDeriv_tilted_left_self, MeasureTheory.measure_unitBall_eq_integral_div_gamma, exp_neg_one_lt_half, log_div_self_rpow_antitoneOn, HurwitzZeta.hasSum_nat_cosKernelβ, DifferentiableWithinAt.exp, hasProd_of_hasSum_log, ContDiffAt.exp, exp_sum, ContinuousAt.rexp, CFC.real_exp_eq_normedSpace_exp, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_integrable_exp_mul, MeasureTheory.exp_llr, ProbabilityTheory.HasCondSubgaussianMGF.ae_trim_condExp_le, exp_sub_sum_range_isBigO_pow, analyticOn_rexp, exp_log_eq_abs, exp_nat_mul, exp_add, Complex.IsExpCmpFilter.isTheta_cpow_exp_re_mul_log, tendsto_one_add_div_rpow_exp, ModularFormClass.exp_decay_sub_atImInfty', tendsto_exp_mul_div_rpow_atTop, tendsto_exp_atBot_nhdsGT, hasStrictDerivAt_exp, dist_le_of_trajectories_ODE_of_mem, summable_exp_nat_mul_iff, Complex.exp_im, mul_exp_neg_le_exp_neg_one, ProbabilityTheory.mgf_pos_iff, HasStrictFDerivAt.exp, exp_neg_one_lt_d9, isLittleO_one_exp_comp, HurwitzZeta.isBigO_atTop_sinKernel, Behrend.exp_four_lt, MeasureTheory.tilted_apply', Function.Periodic.exp_decay_sub_of_bounded_at_inf, HurwitzKernelBounds.isBigO_atTop_F_int_zero_sub, tendsto_one_add_div_pow_exp, tendsto_pow_mul_exp_neg_atTop_nhds_zero, exp_pos, Function.Periodic.exp_decay_of_zero_at_inf, gronwallBound_Ξ΅0, GaussianFourier.integral_rexp_neg_mul_sq_norm, HurwitzZeta.hasSum_int_evenKernelβ, integrableOn_rpow_mul_exp_neg_mul_rpow, ProbabilityTheory.IsGaussian.exists_integrable_exp_sq, abs_exp, rpow_mul_exp_neg_mul_rpow_isLittleO_exp_neg, ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
|