Documentation Verification Report

Hadamard

📁 Source: Mathlib/Analysis/Complex/Hadamard.lean

Statistics

MetricCount
DefinitionsF, interpStrip, interpStrip', invInterpStrip, sSupNormIm, scale, verticalClosedStrip, verticalStrip
8
TheoremsF_BddAbove, F_edge_le_one, diffContOnCl_interpStrip, diffContOnCl_invInterpStrip, eventuallyle, interpStrip_eq_of_mem_verticalStrip, interpStrip_eq_of_pos, interpStrip_eq_of_zero, interpStrip_scale, mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip, norm_invInterpStrip, norm_le_interpStrip_of_mem_verticalClosedStrip, norm_le_interpStrip_of_mem_verticalClosedStrip_eps, norm_le_interpStrip_of_mem_verticalClosedStrip₀₁, norm_le_interpStrip_of_mem_verticalStrip_zero, norm_le_interp_of_mem_verticalClosedStrip', norm_le_interp_of_mem_verticalClosedStrip₀₁', norm_le_sSupNormIm, norm_lt_sSupNormIm_eps, norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip, sSupNormIm_eps_pos, sSupNormIm_nonneg, sSupNormIm_scale_left, sSupNormIm_scale_right, scale_bddAbove, scale_bound_left, scale_bound_right, scale_diffContOnCl, scale_id_mem_verticalClosedStrip_of_mem_verticalClosedStrip, scale_id_mem_verticalStrip_of_mem_verticalStrip
30
Total38

Complex.HadamardThreeLines

Definitions

NameCategoryTheorems
F 📖CompOp
3 mathmath: F_BddAbove, F_edge_le_one, norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip
interpStrip 📖CompOp
7 mathmath: interpStrip_scale, interpStrip_eq_of_pos, interpStrip_eq_of_zero, diffContOnCl_interpStrip, norm_le_interpStrip_of_mem_verticalStrip_zero, interpStrip_eq_of_mem_verticalStrip, norm_le_interpStrip_of_mem_verticalClosedStrip₀₁
interpStrip' 📖CompOp
2 mathmath: interpStrip_scale, norm_le_interpStrip_of_mem_verticalClosedStrip
invInterpStrip 📖CompOp
2 mathmath: norm_invInterpStrip, diffContOnCl_invInterpStrip
sSupNormIm 📖CompOp
10 mathmath: norm_le_interpStrip_of_mem_verticalClosedStrip_eps, norm_le_sSupNormIm, norm_invInterpStrip, sSupNormIm_eps_pos, sSupNormIm_scale_left, interpStrip_eq_of_mem_verticalStrip, norm_lt_sSupNormIm_eps, eventuallyle, sSupNormIm_nonneg, sSupNormIm_scale_right
scale 📖CompOp
7 mathmath: interpStrip_scale, scale_bound_left, sSupNormIm_scale_left, scale_bddAbove, scale_diffContOnCl, sSupNormIm_scale_right, scale_bound_right
verticalClosedStrip 📖CompOp
verticalStrip 📖CompOp
2 mathmath: diffContOnCl_interpStrip, diffContOnCl_invInterpStrip

Theorems

NameKindAssumesProvesValidatesDepends On
F_BddAbove 📖mathematicalReal
Real.instLT
Real.instZero
BddAbove
Real.instLE
Set.image
Complex
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Real.instOne
FSet.image_congr
bddAbove_def
norm_smul
NormedSpace.toNormSMulClass
norm_mul
NormedDivisionRing.toNormMulClass
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
le_trans
Complex.norm_cpow_eq_rpow_re_of_pos
sSupNormIm_eps_pos
Real.rpow_le_one_of_one_le_of_nonpos
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_max_left
Real.rpow_le_rpow_of_exponent_ge
le_of_lt
not_le
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_max_right
Right.neg_nonpos_iff
neg_le_neg_iff
norm_nonneg
lt_max_of_lt_left
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
F_edge_le_one 📖mathematicalReal
Real.instLT
Real.instZero
BddAbove
Real.instLE
Set.image
Complex
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Real.instOne
Set
Set.instMembership
Set.preimage
Complex.re
Set.instInsert
Set.instSingletonSet
Fnorm_smul
NormedSpace.toNormSMulClass
norm_invInterpStrip
zero_sub
Real.rpow_neg_one
neg_zero
Real.rpow_zero
mul_one
inv_mul_le_iff₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
sSupNormIm_eps_pos
le_of_lt
norm_lt_sSupNormIm_eps
Real.instZeroLEOneClass
Set.mem_singleton_iff
sub_self
one_mul
diffContOnCl_interpStrip 📖mathematicalDiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
interpStrip
verticalStrip
Real
Real.instZero
Real.instOne
interpStrip_eq_of_zero
diffContOnCl_const
Differentiable.diffContOnCl
interpStrip_eq_of_pos
lt_of_le_of_ne
sSupNormIm_nonneg
DifferentiableAt.mul
DifferentiableAt.const_cpow
DifferentiableAt.const_sub
differentiableAt_id
diffContOnCl_invInterpStrip 📖mathematicalReal
Real.instLT
Real.instZero
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
invInterpStrip
verticalStrip
Real.instOne
Differentiable.diffContOnCl
Differentiable.mul
Differentiable.const_cpow
Differentiable.sub_const
differentiable_id
Complex.ofReal_add
Complex.ofReal_ne_zero
ne_of_gt
sSupNormIm_eps_pos
Differentiable.neg
eventuallyle 📖mathematicalBddAbove
Real
Real.instLE
Set.image
Complex
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Real.instZero
Real.instOne
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
Set
Set.instMembership
Filter.EventuallyLE
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
Complex.instNorm
Complex.instMul
Complex.instPow
Complex.instAdd
Complex.ofReal
sSupNormIm
Complex.instSub
Complex.instOne
Filter.mp_mem
self_mem_nhdsWithin
Filter.univ_mem'
norm_le_interpStrip_of_mem_verticalClosedStrip_eps
Set.mem_of_mem_of_subset
Set.preimage_mono
Set.Ioo_subset_Icc_self
interpStrip_eq_of_mem_verticalStrip 📖mathematicalComplex
Set
Set.instMembership
verticalStrip
Real
Real.instZero
Real.instOne
interpStrip
Complex.instMul
Complex.instPow
Complex.ofReal
sSupNormIm
Complex.instSub
Complex.instOne
interpStrip_eq_of_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sub_eq_zero
ne_of_lt
lt_of_le_of_ne
sSupNormIm_nonneg
interpStrip_eq_of_pos
interpStrip_eq_of_pos 📖mathematicalReal
Real.instLT
Real.instZero
sSupNormIm
Real.instOne
interpStrip
Complex
Complex.instMul
Complex.instPow
Complex.ofReal
Complex.instSub
Complex.instOne
ne_of_gt
interpStrip_eq_of_zero 📖mathematicalsSupNormIm
Real
Real.instZero
Real.instOne
interpStrip
Complex
Complex.instZero
interpStrip_scale 📖mathematicalReal
Real.instLT
interpStrip
scale
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instSub
Complex.ofReal
interpStrip'
sSupNormIm_scale_left
sSupNormIm_scale_right
mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip 📖mathematicalReal
Real.instLT
Complex
Set
Set.instMembership
verticalClosedStrip
Real.instZero
Real.instOne
Complex.instSub
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.ofReal
Complex.div_re
sub_self
MulZeroClass.mul_zero
zero_div
add_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
AddGroup.toOrderedSub
Nat.cast_one
Complex.normSq_ofReal
mul_div_assoc
div_mul_eq_div_div_swap
div_self
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
le_of_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_le_sub_iff_right
add_sub_assoc
div_sub_div_same
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
norm_invInterpStrip 📖mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Complex
Complex.instNorm
invInterpStrip
Real.instMul
Real.instPow
Real.instAdd
sSupNormIm
Real.instSub
Complex.re
Real.instOne
Real.instNeg
norm_mul
NormedDivisionRing.toNormMulClass
Complex.ofReal_add
Complex.norm_cpow_eq_rpow_re_of_pos
sSupNormIm_eps_pos
norm_le_interpStrip_of_mem_verticalClosedStrip 📖mathematicalReal
Real.instLT
Complex
Set
Set.instMembership
verticalClosedStrip
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Complex.instNorm
interpStrip'
norm_le_interpStrip_of_mem_verticalClosedStrip₀₁
mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip
scale_diffContOnCl
scale_bddAbove
interpStrip_scale
div_sub_div_same
norm_le_interpStrip_of_mem_verticalClosedStrip_eps 📖mathematicalReal
Real.instLT
Real.instZero
BddAbove
Real.instLE
Set.image
Complex
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Real.instOne
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
Set
Set.instMembership
Complex.instNorm
Complex.instMul
Complex.instPow
Complex.instAdd
Complex.ofReal
sSupNormIm
Complex.instSub
Complex.instOne
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_cpow_eq_rpow_re_of_pos
sSupNormIm_eps_pos
mul_inv_le_iff₀'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
one_mul
mul_inv_le_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.rpow_neg_one
Real.rpow_mul
le_of_lt
mul_neg
mul_one
neg_sub
mul_assoc
norm_smul
NormedSpace.toNormSMulClass
norm_invInterpStrip
mul_comm
norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip
norm_le_interpStrip_of_mem_verticalClosedStrip₀₁ 📖mathematicalComplex
Set
Set.instMembership
verticalClosedStrip
Real
Real.instZero
Real.instOne
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Complex.instNorm
interpStrip
le_on_closure
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
norm_le_interpStrip_of_mem_verticalStrip_zero
Continuous.comp_continuousOn'
continuous_norm
DiffContOnCl.continuousOn
diffContOnCl_interpStrip
Complex.closure_preimage_re
closure_Ioo
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_ne_one
NeZero.charZero_one
RCLike.charZero_rclike
verticalClosedStrip.eq_1
norm_le_interpStrip_of_mem_verticalStrip_zero 📖mathematicalDiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
Real
Real.instZero
Real.instOne
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Set
Set.instMembership
Complex.instNorm
interpStrip
tendsto_le_of_eventuallyLE
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
interpStrip_eq_of_mem_verticalStrip
zero_add
ContinuousWithinAt.tendsto
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_cpow_eq_rpow_re_of_nonneg
le_of_lt
sSupNormIm_eps_pos
ne_of_lt
tendsto_nhdsWithin_congr
sSupNormIm_nonneg
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.rpow_const
Filter.Tendsto.add_const
IsTopologicalSemiring.toContinuousAdd
tendsto_nhdsWithin_of_tendsto_nhds
Continuous.tendsto
continuous_id'
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
eventuallyle
norm_le_interp_of_mem_verticalClosedStrip' 📖mathematicalReal
Real.instLT
Complex
Set
Set.instMembership
verticalClosedStrip
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Real.instMul
Real.instPow
Real.instSub
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex.re
norm_le_interp_of_mem_verticalClosedStrip₀₁'
mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip
scale_diffContOnCl
scale_bddAbove
scale_bound_left
scale_bound_right
norm_le_interp_of_mem_verticalClosedStrip₀₁' 📖mathematicalComplex
Set
Set.instMembership
verticalClosedStrip
Real
Real.instZero
Real.instOne
DiffContOnCl
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Real.instMul
Real.instPow
Real.instSub
Complex.re
interpStrip_eq_of_zero
norm_zero
mul_nonneg_iff
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toPosMulStrictMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.rpow_nonneg
sSupNormIm_nonneg
interpStrip_eq_of_pos
lt_of_le_of_ne
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_cpow_eq_rpow_re_of_pos
Ne.le_iff_lt
LE.le.trans
norm_le_interpStrip_of_mem_verticalClosedStrip₀₁
mul_le_mul_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Real.rpow_le_rpow
sSupNormIm.eq_1
csSup_le
Set.image_congr
sub_nonneg
covariant_swap_add_of_covariant_add
norm_nonneg
norm_le_sSupNormIm 📖mathematicalComplex
Set
Set.instMembership
verticalClosedStrip
Real
Real.instZero
Real.instOne
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
sSupNormIm
Complex.re
le_csSup
BddAbove.mono
Set.image_mono
Set.preimage_mono
Set.singleton_subset_iff
Set.mem_image_of_mem
norm_lt_sSupNormIm_eps 📖mathematicalReal
Real.instLT
Real.instZero
Complex
Set
Set.instMembership
verticalClosedStrip
Real.instOne
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Real.instAdd
sSupNormIm
Complex.re
lt_add_of_pos_of_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_le_sSupNormIm
norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip 📖mathematicalReal
Real.instLT
Real.instZero
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
Real.instOne
BddAbove
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
Set
Set.instMembership
FPhragmenLindelof.vertical_strip
DiffContOnCl.smul
IsScalarTower.left
diffContOnCl_invInterpStrip
sub_zero
div_one
Real.pi_pos
F_BddAbove
Asymptotics.isBigO_iff
Filter.eventually_inf_principal
Filter.Eventually.of_forall
MulZeroClass.zero_mul
Real.exp_zero
mul_one
Real.abs_exp
one_mul
LE.le.trans
Set.image_congr
Set.preimage_mono
Set.Ioo_subset_Icc_self
le_of_lt
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.add_one_le_exp
F_edge_le_one
sSupNormIm_eps_pos 📖mathematicalReal
Real.instLT
Real.instZero
Real.instAdd
sSupNormIm
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
sSupNormIm_nonneg
sSupNormIm_nonneg 📖mathematicalReal
Real.instLE
Real.instZero
sSupNormIm
Real.sSup_nonneg
sSupNormIm_scale_left 📖mathematicalReal
Real.instLT
sSupNormIm
scale
Real.instZero
Set.image_comp
Set.ext
Set.image_congr
MulZeroClass.zero_mul
sub_self
MulZeroClass.mul_zero
add_zero
Nat.cast_zero
Complex.div_re
Complex.normSq_ofReal
Complex.ofReal_re
zero_div
sub_zero
Complex.ofReal_sub
div_mul_comm
div_self
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
one_mul
add_sub_cancel
sSupNormIm_scale_right 📖mathematicalReal
Real.instLT
sSupNormIm
scale
Real.instOne
Set.image_comp
Set.ext
Set.image_congr
one_mul
sub_self
MulZeroClass.mul_zero
sub_zero
add_sub_cancel
Nat.cast_one
Complex.div_re
Complex.normSq_ofReal
Complex.ofReal_re
Complex.ofReal_sub
zero_div
add_zero
div_mul_eq_div_div_swap
mul_div_assoc
div_self
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
mul_one
div_mul_comm
scale_bddAbove 📖mathematicalReal
Real.instLT
BddAbove
Real.instLE
Set.image
Complex
Norm.norm
NormedAddCommGroup.toNorm
verticalClosedStrip
scale
Real.instZero
Real.instOne
bddAbove_def
Set.image_congr
scale_id_mem_verticalClosedStrip_of_mem_verticalClosedStrip
scale_bound_left 📖mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Complex
Set
Set.instMembership
Set.preimage
Complex.re
Set.instSingletonSet
Real.instZero
scaleMulZeroClass.zero_mul
sub_self
MulZeroClass.mul_zero
add_zero
scale_bound_right 📖mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Complex
Set
Set.instMembership
Set.preimage
Complex.re
Set.instSingletonSet
Real.instOne
scaleone_mul
sub_self
MulZeroClass.mul_zero
sub_zero
add_sub_cancel
scale_diffContOnCl 📖mathematicalReal
Real.instLT
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
verticalStrip
scale
Real.instZero
Real.instOne
DiffContOnCl.comp
DiffContOnCl.const_add
DiffContOnCl.smul_const
IsScalarTower.right
Differentiable.diffContOnCl
differentiable_id
Set.MapsTo.eq_1
scale_id_mem_verticalStrip_of_mem_verticalStrip
scale_id_mem_verticalClosedStrip_of_mem_verticalClosedStrip 📖mathematicalReal
Real.instLT
Complex
Set
Set.instMembership
verticalClosedStrip
Real.instZero
Real.instOne
Complex.instAdd
Complex.ofReal
Complex.instMul
Complex.instSub
sub_self
MulZeroClass.mul_zero
sub_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_comm
sub_le_sub_iff_right
add_sub_assoc
add_zero
one_mul
sub_nonneg
LT.lt.le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
scale_id_mem_verticalStrip_of_mem_verticalStrip 📖mathematicalReal
Real.instLT
Complex
Set
Set.instMembership
verticalStrip
Real.instZero
Real.instOne
Complex.instAdd
Complex.ofReal
Complex.instMul
Complex.instSub
sub_self
MulZeroClass.mul_zero
sub_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_comm
sub_lt_sub_iff_right
add_sub_assoc
add_zero
one_mul
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono

---

← Back to Index